1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
// Code generated from pkg.templ.go. DO NOT EDIT.
// mode5 implements the CRYSTALS-Dilithium signature scheme Dilithium5
// as submitted to round3 of the NIST PQC competition and described in
//
// https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
package mode5
import (
"crypto"
"errors"
"io"
"github.com/cloudflare/circl/sign"
"github.com/cloudflare/circl/sign/dilithium/mode5/internal"
common "github.com/cloudflare/circl/sign/internal/dilithium"
)
const (
// Size of seed for NewKeyFromSeed
SeedSize = common.SeedSize
// Size of a packed PublicKey
PublicKeySize = internal.PublicKeySize
// Size of a packed PrivateKey
PrivateKeySize = internal.PrivateKeySize
// Size of a signature
SignatureSize = internal.SignatureSize
)
// PublicKey is the type of Dilithium5 public key
type PublicKey internal.PublicKey
// PrivateKey is the type of Dilithium5 private key
type PrivateKey internal.PrivateKey
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (*PublicKey, *PrivateKey, error) {
pk, sk, err := internal.GenerateKey(rand)
return (*PublicKey)(pk), (*PrivateKey)(sk), err
}
// NewKeyFromSeed derives a public/private key pair using the given seed.
func NewKeyFromSeed(seed *[SeedSize]byte) (*PublicKey, *PrivateKey) {
pk, sk := internal.NewKeyFromSeed(seed)
return (*PublicKey)(pk), (*PrivateKey)(sk)
}
// SignTo signs the given message and writes the signature into signature.
// It will panic if signature is not of length at least SignatureSize.
func SignTo(sk *PrivateKey, msg, sig []byte) {
var rnd [32]byte
internal.SignTo(
(*internal.PrivateKey)(sk),
func(w io.Writer) {
w.Write(msg)
},
rnd,
sig,
)
}
// Verify checks whether the given signature by pk on msg is valid.
func Verify(pk *PublicKey, msg, sig []byte) bool {
return internal.Verify(
(*internal.PublicKey)(pk),
func(w io.Writer) {
_, _ = w.Write(msg)
},
sig,
)
}
// Sets pk to the public key encoded in buf.
func (pk *PublicKey) Unpack(buf *[PublicKeySize]byte) {
(*internal.PublicKey)(pk).Unpack(buf)
}
// Sets sk to the private key encoded in buf.
func (sk *PrivateKey) Unpack(buf *[PrivateKeySize]byte) {
(*internal.PrivateKey)(sk).Unpack(buf)
}
// Packs the public key into buf.
func (pk *PublicKey) Pack(buf *[PublicKeySize]byte) {
(*internal.PublicKey)(pk).Pack(buf)
}
// Packs the private key into buf.
func (sk *PrivateKey) Pack(buf *[PrivateKeySize]byte) {
(*internal.PrivateKey)(sk).Pack(buf)
}
// Packs the public key.
func (pk *PublicKey) Bytes() []byte {
var buf [PublicKeySize]byte
pk.Pack(&buf)
return buf[:]
}
// Packs the private key.
func (sk *PrivateKey) Bytes() []byte {
var buf [PrivateKeySize]byte
sk.Pack(&buf)
return buf[:]
}
// Packs the public key.
func (pk *PublicKey) MarshalBinary() ([]byte, error) {
return pk.Bytes(), nil
}
// Packs the private key.
func (sk *PrivateKey) MarshalBinary() ([]byte, error) {
return sk.Bytes(), nil
}
// Unpacks the public key from data.
func (pk *PublicKey) UnmarshalBinary(data []byte) error {
if len(data) != PublicKeySize {
return errors.New("packed public key must be of mode5.PublicKeySize bytes")
}
var buf [PublicKeySize]byte
copy(buf[:], data)
pk.Unpack(&buf)
return nil
}
// Unpacks the private key from data.
func (sk *PrivateKey) UnmarshalBinary(data []byte) error {
if len(data) != PrivateKeySize {
return errors.New("packed private key must be of mode5.PrivateKeySize bytes")
}
var buf [PrivateKeySize]byte
copy(buf[:], data)
sk.Unpack(&buf)
return nil
}
// Sign signs the given message.
//
// opts.HashFunc() must return zero, which can be achieved by passing
// crypto.Hash(0) for opts. rand is ignored. Will only return an error
// if opts.HashFunc() is non-zero.
//
// This function is used to make PrivateKey implement the crypto.Signer
// interface. The package-level SignTo function might be more convenient
// to use.
func (sk *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) (
sig []byte, err error) {
var ret [SignatureSize]byte
if opts.HashFunc() != crypto.Hash(0) {
return nil, errors.New("dilithium: cannot sign hashed message")
}
SignTo(sk, msg, ret[:])
return ret[:], nil
}
// Computes the public key corresponding to this private key.
//
// Returns a *PublicKey. The type crypto.PublicKey is used to make
// PrivateKey implement the crypto.Signer interface.
func (sk *PrivateKey) Public() crypto.PublicKey {
return (*PublicKey)((*internal.PrivateKey)(sk).Public())
}
// Equal returns whether the two private keys equal.
func (sk *PrivateKey) Equal(other crypto.PrivateKey) bool {
castOther, ok := other.(*PrivateKey)
if !ok {
return false
}
return (*internal.PrivateKey)(sk).Equal((*internal.PrivateKey)(castOther))
}
// Equal returns whether the two public keys equal.
func (pk *PublicKey) Equal(other crypto.PublicKey) bool {
castOther, ok := other.(*PublicKey)
if !ok {
return false
}
return (*internal.PublicKey)(pk).Equal((*internal.PublicKey)(castOther))
}
// Boilerplate for generic signatures API
type scheme struct{}
var sch sign.Scheme = &scheme{}
// Scheme returns a generic signature interface for Dilithium5.
func Scheme() sign.Scheme { return sch }
func (*scheme) Name() string { return "Dilithium5" }
func (*scheme) PublicKeySize() int { return PublicKeySize }
func (*scheme) PrivateKeySize() int { return PrivateKeySize }
func (*scheme) SignatureSize() int { return SignatureSize }
func (*scheme) SeedSize() int { return SeedSize }
// TODO TLSIdentifier()
func (*scheme) SupportsContext() bool {
return false
}
func (*scheme) GenerateKey() (sign.PublicKey, sign.PrivateKey, error) {
return GenerateKey(nil)
}
func (*scheme) Sign(
sk sign.PrivateKey,
msg []byte,
opts *sign.SignatureOpts,
) []byte {
sig := make([]byte, SignatureSize)
priv, ok := sk.(*PrivateKey)
if !ok {
panic(sign.ErrTypeMismatch)
}
if opts != nil && opts.Context != "" {
panic(sign.ErrContextNotSupported)
}
SignTo(priv, msg, sig)
return sig
}
func (*scheme) Verify(
pk sign.PublicKey,
msg, sig []byte,
opts *sign.SignatureOpts,
) bool {
pub, ok := pk.(*PublicKey)
if !ok {
panic(sign.ErrTypeMismatch)
}
if opts != nil && opts.Context != "" {
panic(sign.ErrContextNotSupported)
}
return Verify(pub, msg, sig)
}
func (*scheme) DeriveKey(seed []byte) (sign.PublicKey, sign.PrivateKey) {
if len(seed) != SeedSize {
panic(sign.ErrSeedSize)
}
var seed2 [SeedSize]byte
copy(seed2[:], seed)
return NewKeyFromSeed(&seed2)
}
func (*scheme) UnmarshalBinaryPublicKey(buf []byte) (sign.PublicKey, error) {
if len(buf) != PublicKeySize {
return nil, sign.ErrPubKeySize
}
var (
buf2 [PublicKeySize]byte
ret PublicKey
)
copy(buf2[:], buf)
ret.Unpack(&buf2)
return &ret, nil
}
func (*scheme) UnmarshalBinaryPrivateKey(buf []byte) (sign.PrivateKey, error) {
if len(buf) != PrivateKeySize {
return nil, sign.ErrPrivKeySize
}
var (
buf2 [PrivateKeySize]byte
ret PrivateKey
)
copy(buf2[:], buf)
ret.Unpack(&buf2)
return &ret, nil
}
func (sk *PrivateKey) Scheme() sign.Scheme {
return sch
}
func (sk *PublicKey) Scheme() sign.Scheme {
return sch
}
|