1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
package rsa
import (
"crypto/rand"
"crypto/rsa"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"math/big"
"sync"
)
// KeyShare represents a portion of the key. It can only be used to generate SignShare's. During the dealing phase (when Deal is called), one KeyShare is generated per player.
type KeyShare struct {
si *big.Int
twoDeltaSi *big.Int // optional cached value, this value is used to marginally speed up SignShare generation in Sign. If nil, it will be generated when needed and then cached.
Index uint // When KeyShare's are generated they are each assigned an index sequentially
Players uint
Threshold uint
}
func (kshare KeyShare) String() string {
return fmt.Sprintf("(t,n): (%v,%v) index: %v si: 0x%v",
kshare.Threshold, kshare.Players, kshare.Index, kshare.si.Text(16))
}
// MarshalBinary encodes a KeyShare into a byte array in a format readable by UnmarshalBinary.
// Note: Only Index's up to math.MaxUint16 are supported
func (kshare *KeyShare) MarshalBinary() ([]byte, error) {
// The encoding format is
// | Players: uint16 | Threshold: uint16 | Index: uint16 | siLen: uint16 | si: []byte | twoDeltaSiNil: bool | twoDeltaSiLen: uint16 | twoDeltaSi: []byte |
// with all values in big-endian.
if kshare.Players > math.MaxUint16 {
return nil, fmt.Errorf("rsa_threshold: keyshare marshall: Players is too big to fit in a uint16")
}
if kshare.Threshold > math.MaxUint16 {
return nil, fmt.Errorf("rsa_threshold: keyshare marshall: Threshold is too big to fit in a uint16")
}
if kshare.Index > math.MaxUint16 {
return nil, fmt.Errorf("rsa_threshold: keyshare marshall: Index is too big to fit in a uint16")
}
players := uint16(kshare.Players)
threshold := uint16(kshare.Threshold)
index := uint16(kshare.Index)
twoDeltaSiBytes := []byte(nil)
if kshare.twoDeltaSi != nil {
twoDeltaSiBytes = kshare.twoDeltaSi.Bytes()
}
twoDeltaSiLen := len(twoDeltaSiBytes)
if twoDeltaSiLen > math.MaxInt16 {
return nil, fmt.Errorf("rsa_threshold: keyshare marshall: twoDeltaSiBytes is too big to fit it's length in a uint16")
}
siBytes := kshare.si.Bytes()
siLength := len(siBytes)
if siLength == 0 {
siLength = 1
siBytes = []byte{0}
}
if siLength > math.MaxInt16 {
return nil, fmt.Errorf("rsa_threshold: keyshare marshall: siBytes is too big to fit it's length in a uint16")
}
blen := 2 + 2 + 2 + 2 + 2 + 1 + siLength + twoDeltaSiLen
out := make([]byte, blen)
binary.BigEndian.PutUint16(out[0:2], players)
binary.BigEndian.PutUint16(out[2:4], threshold)
binary.BigEndian.PutUint16(out[4:6], index)
binary.BigEndian.PutUint16(out[6:8], uint16(siLength)) // okay because of conditions checked above
copy(out[8:8+siLength], siBytes)
if twoDeltaSiBytes != nil {
out[8+siLength] = 1 // twoDeltaSiNil
}
binary.BigEndian.PutUint16(out[8+siLength+1:8+siLength+3], uint16(twoDeltaSiLen))
if twoDeltaSiBytes != nil {
copy(out[8+siLength+3:8+siLength+3+twoDeltaSiLen], twoDeltaSiBytes)
}
return out, nil
}
// UnmarshalBinary recovers a KeyShare from a slice of bytes, or returns an error if the encoding is invalid.
func (kshare *KeyShare) UnmarshalBinary(data []byte) error {
// The encoding format is
// | Players: uint16 | Threshold: uint16 | Index: uint16 | siLen: uint16 | si: []byte | twoDeltaSiNil: bool | twoDeltaSiLen: uint16 | twoDeltaSi: []byte |
// with all values in big-endian.
if len(data) < 6 {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: data length was too short for reading Players, Threshold, Index")
}
players := binary.BigEndian.Uint16(data[0:2])
threshold := binary.BigEndian.Uint16(data[2:4])
index := binary.BigEndian.Uint16(data[4:6])
if len(data[6:]) < 2 {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: data length was too short for reading siLen length")
}
siLen := binary.BigEndian.Uint16(data[6:8])
if siLen == 0 {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: si is a required field but siLen was 0")
}
if uint16(len(data[8:])) < siLen {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: data length was too short for reading si, needed: %d found: %d", siLen, len(data[8:]))
}
si := new(big.Int).SetBytes(data[8 : 8+siLen])
if len(data[8+siLen:]) < 1 {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: data length was too short for reading twoDeltaSiNil")
}
isNil := data[8+siLen]
var twoDeltaSi *big.Int
if isNil != 0 {
if len(data[8+siLen+1:]) < 2 {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: data length was too short for reading twoDeltaSiLen length")
}
twoDeltaSiLen := binary.BigEndian.Uint16(data[8+siLen+1 : 8+siLen+3])
if uint16(len(data[8+siLen+3:])) < twoDeltaSiLen {
return fmt.Errorf("rsa_threshold: keyshare unmarshalKeyShareTest failed: data length was too short for reading twoDeltaSi, needed: %d found: %d", twoDeltaSiLen, len(data[8+siLen+2:]))
}
twoDeltaSi = new(big.Int).SetBytes(data[8+siLen+3 : 8+siLen+3+twoDeltaSiLen])
}
kshare.Players = uint(players)
kshare.Threshold = uint(threshold)
kshare.Index = uint(index)
kshare.si = si
kshare.twoDeltaSi = twoDeltaSi
return nil
}
// Returns the cached value in twoDeltaSi or if nil, generates 2∆s_i, stores it in twoDeltaSi, and returns it
func (kshare *KeyShare) get2DeltaSi(players int64) *big.Int {
// use the cached value if it exists
if kshare.twoDeltaSi != nil {
return kshare.twoDeltaSi
}
delta := calculateDelta(players)
// 2∆s_i
// delta << 1 == delta * 2
delta.Lsh(delta, 1).Mul(delta, kshare.si)
kshare.twoDeltaSi = delta
return delta
}
// Sign msg using a KeyShare. msg MUST be padded and hashed. Call PadHash before this method.
//
// If rand is not nil then blinding will be used to avoid timing
// side-channel attacks.
//
// parallel indicates whether the blinding operations should use go routines to operate in parallel.
// If parallel is false, blinding will take about 2x longer than nonbinding, otherwise it will take about the same time
// (see benchmarks). If randSource is nil, parallel has no effect. parallel should almost always be set to true.
func (kshare *KeyShare) Sign(randSource io.Reader, pub *rsa.PublicKey, digest []byte, parallel bool) (SignShare, error) {
x := &big.Int{}
x.SetBytes(digest)
exp := kshare.get2DeltaSi(int64(kshare.Players))
var signShare SignShare
signShare.Players = kshare.Players
signShare.Threshold = kshare.Threshold
signShare.Index = kshare.Index
signShare.xi = &big.Int{}
if randSource != nil {
// Let's blind.
// We can't use traditional RSA blinding (as used in rsa.go) because we are exponentiating by exp and not d.
// As such, Euler's theorem doesn't apply ( exp * d != 0 (mod ϕ(n)) ).
// Instead, we will choose a random r and compute x^{exp+r} * x^{-r} = x^{exp}.
// This should (hopefully) prevent revealing information of the true value of exp, since with exp you can derive
// s_i, the secret key share.
r, err := rand.Int(randSource, pub.N)
if err != nil {
return SignShare{}, errors.New("rsa_threshold: unable to get random value for blinding")
}
expPlusr := big.Int{}
// exp + r
expPlusr.Add(exp, r)
var wg *sync.WaitGroup
// x^{|2∆s_i+r|}
if parallel {
wg = &sync.WaitGroup{}
wg.Add(1)
go func() {
signShare.xi.Exp(x, &expPlusr, pub.N)
wg.Done()
}()
} else {
signShare.xi.Exp(x, &expPlusr, pub.N)
}
xExpr := big.Int{}
// x^r
xExpr.Exp(x, r, pub.N)
// x^{-r}
res := xExpr.ModInverse(&xExpr, pub.N)
if res == nil {
// extremely unlikely, somehow x^r is p or q
return SignShare{}, errors.New("rsa_threshold: no mod inverse")
}
if wg != nil {
wg.Wait()
}
// x^{|2∆s_i+r|} * x^{-r} = x^{2∆s_i}
signShare.xi.Mul(signShare.xi, &xExpr)
signShare.xi.Mod(signShare.xi, pub.N)
} else {
// x^{2∆s_i}
signShare.xi = &big.Int{}
signShare.xi.Exp(x, exp, pub.N)
}
return signShare, nil
}
|