1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
// k12 implements the KangarooTwelve XOF.
//
// KangarooTwelve is being standardised at the CFRG working group
// of the IRTF. This package implements draft 10.
//
// https://datatracker.ietf.org/doc/draft-irtf-cfrg-kangarootwelve/10/
package k12
import (
"encoding/binary"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/simd/keccakf1600"
)
const chunkSize = 8192 // aka B
// KangarooTwelve splits the message into chunks of 8192 bytes each.
// The first chunk is absorbed directly in a TurboSHAKE128 instance, which
// we call the stalk. The subsequent chunks aren't absorbed directly, but
// instead their hash is absorbed: they're like leafs on a stalk.
// If we have a fast TurboSHAKE128 available, we buffer chunks until we have
// enough to do the parallel TurboSHAKE128. If not, we absorb directly into
// a separate TurboSHAKE128 state.
type State struct {
initialTodo int // Bytes left to absorb for the first chunk.
stalk sha3.State
context []byte // context string "C" provided by the user
// buffer of incoming data so we can do parallel TurboSHAKE128:
// nil when we haven't absorbed the first chunk yet;
// empty if we have, but we do not have a fast parallel TurboSHAKE128;
// and chunkSize*lanes in length if we have.
buf []byte
offset int // offset in buf or bytes written to leaf
// Number of chunk hashes ("CV_i") absorbed into the stalk.
chunk uint
// TurboSHAKE128 instance to compute the leaf in case we don't have
// a fast parallel TurboSHAKE128, viz when lanes == 1.
leaf *sha3.State
lanes uint8 // number of TurboSHAKE128s to compute in parallel
}
// NewDraft10 creates a new instance of Kangaroo12 draft version -10.
func NewDraft10(c []byte) State {
var lanes byte = 1
if keccakf1600.IsEnabledX4() {
lanes = 4
} else if keccakf1600.IsEnabledX2() {
lanes = 2
}
return newDraft10(c, lanes)
}
func newDraft10(c []byte, lanes byte) State {
return State{
initialTodo: chunkSize,
stalk: sha3.NewTurboShake128(0x07),
context: c,
lanes: lanes,
}
}
func (s *State) Reset() {
s.initialTodo = chunkSize
s.stalk.Reset()
s.stalk.SwitchDS(0x07)
s.buf = nil
s.offset = 0
s.chunk = 0
}
func (s *State) Clone() State {
stalk := s.stalk.Clone().(*sha3.State)
ret := State{
initialTodo: s.initialTodo,
stalk: *stalk,
context: s.context,
offset: s.offset,
chunk: s.chunk,
lanes: s.lanes,
}
if s.leaf != nil {
ret.leaf = s.leaf.Clone().(*sha3.State)
}
if s.buf != nil {
ret.buf = make([]byte, len(s.buf))
copy(ret.buf, s.buf)
}
return ret
}
func Draft10Sum(hash []byte, msg []byte, c []byte) {
// TODO Tweak number of lanes depending on the length of the message
s := NewDraft10(c)
_, _ = s.Write(msg)
_, _ = s.Read(hash)
}
func (s *State) Write(p []byte) (int, error) {
written := len(p)
// The first chunk is written directly to the stalk.
if s.initialTodo > 0 {
taken := s.initialTodo
if len(p) < taken {
taken = len(p)
}
headP := p[:taken]
_, _ = s.stalk.Write(headP)
s.initialTodo -= taken
p = p[taken:]
}
if len(p) == 0 {
return written, nil
}
// If this is the first bit of data written after the initial chunk,
// we're out of the fast-path and allocate some buffers.
if s.buf == nil {
if s.lanes != 1 {
s.buf = make([]byte, int(s.lanes)*chunkSize)
} else {
// We create the buffer to signal we're past the first chunk,
// but do not use it.
s.buf = make([]byte, 0)
h := sha3.NewTurboShake128(0x0B)
s.leaf = &h
}
_, _ = s.stalk.Write([]byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00})
s.stalk.SwitchDS(0x06)
}
// If we're just using one lane, we don't need to cache in a buffer
// for parallel hashing. Instead, we feed directly to TurboSHAKE.
if s.lanes == 1 {
for len(p) > 0 {
// Write to current leaf.
to := chunkSize - s.offset
if len(p) < to {
to = len(p)
}
_, _ = s.leaf.Write(p[:to])
p = p[to:]
s.offset += to
// Did we fill the chunk?
if s.offset == chunkSize {
var cv [32]byte
_, _ = s.leaf.Read(cv[:])
_, _ = s.stalk.Write(cv[:])
s.leaf.Reset()
s.offset = 0
s.chunk++
}
}
return written, nil
}
// If we can't fill all our lanes or the buffer isn't empty, we write the
// data to the buffer.
if s.offset != 0 || len(p) < len(s.buf) {
to := len(s.buf) - s.offset
if len(p) < to {
to = len(p)
}
p2 := p[:to]
p = p[to:]
copy(s.buf[s.offset:], p2)
s.offset += to
}
// Absorb the buffer if we filled it
if s.offset == len(s.buf) {
s.writeX(s.buf)
s.offset = 0
}
// Note that at this point we may assume that s.offset = 0 if len(p) != 0
if len(p) != 0 && s.offset != 0 {
panic("shouldn't happen")
}
// Absorb a bunch of chunks at the same time.
if len(p) >= int(s.lanes)*chunkSize {
p = s.writeX(p)
}
// Put the remainder in the buffer.
if len(p) > 0 {
copy(s.buf, p)
s.offset = len(p)
}
return written, nil
}
// Absorb a multiple of a multiple of lanes * chunkSize.
// Returns the remainder.
func (s *State) writeX(p []byte) []byte {
switch s.lanes {
case 4:
return s.writeX4(p)
default:
return s.writeX2(p)
}
}
func (s *State) writeX4(p []byte) []byte {
for len(p) >= 4*chunkSize {
var x4 keccakf1600.StateX4
a := x4.Initialize(true)
for offset := 0; offset < 48*168; offset += 168 {
for i := 0; i < 21; i++ {
a[i*4] ^= binary.LittleEndian.Uint64(
p[8*i+offset:],
)
a[i*4+1] ^= binary.LittleEndian.Uint64(
p[chunkSize+8*i+offset:],
)
a[i*4+2] ^= binary.LittleEndian.Uint64(
p[chunkSize*2+8*i+offset:],
)
a[i*4+3] ^= binary.LittleEndian.Uint64(
p[chunkSize*3+8*i+offset:],
)
}
x4.Permute()
}
for i := 0; i < 16; i++ {
a[i*4] ^= binary.LittleEndian.Uint64(
p[8*i+48*168:],
)
a[i*4+1] ^= binary.LittleEndian.Uint64(
p[chunkSize+8*i+48*168:],
)
a[i*4+2] ^= binary.LittleEndian.Uint64(
p[chunkSize*2+8*i+48*168:],
)
a[i*4+3] ^= binary.LittleEndian.Uint64(
p[chunkSize*3+8*i+48*168:],
)
}
a[16*4] ^= 0x0b
a[16*4+1] ^= 0x0b
a[16*4+2] ^= 0x0b
a[16*4+3] ^= 0x0b
a[20*4] ^= 0x80 << 56
a[20*4+1] ^= 0x80 << 56
a[20*4+2] ^= 0x80 << 56
a[20*4+3] ^= 0x80 << 56
x4.Permute()
var buf [32 * 4]byte
for i := 0; i < 4; i++ {
binary.LittleEndian.PutUint64(buf[8*i:], a[4*i])
binary.LittleEndian.PutUint64(buf[32+8*i:], a[4*i+1])
binary.LittleEndian.PutUint64(buf[32*2+8*i:], a[4*i+2])
binary.LittleEndian.PutUint64(buf[32*3+8*i:], a[4*i+3])
}
_, _ = s.stalk.Write(buf[:])
p = p[chunkSize*4:]
s.chunk += 4
}
return p
}
func (s *State) writeX2(p []byte) []byte {
// TODO On M2 Pro, 1/3 of the time is spent on this function
// and LittleEndian.Uint64 excluding the actual permutation.
// Rewriting in assembler might be worthwhile.
for len(p) >= 2*chunkSize {
var x2 keccakf1600.StateX2
a := x2.Initialize(true)
for offset := 0; offset < 48*168; offset += 168 {
for i := 0; i < 21; i++ {
a[i*2] ^= binary.LittleEndian.Uint64(
p[8*i+offset:],
)
a[i*2+1] ^= binary.LittleEndian.Uint64(
p[chunkSize+8*i+offset:],
)
}
x2.Permute()
}
for i := 0; i < 16; i++ {
a[i*2] ^= binary.LittleEndian.Uint64(
p[8*i+48*168:],
)
a[i*2+1] ^= binary.LittleEndian.Uint64(
p[chunkSize+8*i+48*168:],
)
}
a[16*2] ^= 0x0b
a[16*2+1] ^= 0x0b
a[20*2] ^= 0x80 << 56
a[20*2+1] ^= 0x80 << 56
x2.Permute()
var buf [32 * 2]byte
for i := 0; i < 4; i++ {
binary.LittleEndian.PutUint64(buf[8*i:], a[2*i])
binary.LittleEndian.PutUint64(buf[32+8*i:], a[2*i+1])
}
_, _ = s.stalk.Write(buf[:])
p = p[chunkSize*2:]
s.chunk += 2
}
return p
}
func (s *State) Read(p []byte) (int, error) {
if s.stalk.IsAbsorbing() {
// Write context string C
_, _ = s.Write(s.context)
// Write length_encode( |C| )
var buf [9]byte
binary.BigEndian.PutUint64(buf[:8], uint64(len(s.context)))
// Find first non-zero digit in big endian encoding of context length
i := 0
for buf[i] == 0 && i < 8 {
i++
}
buf[8] = byte(8 - i) // number of bytes to represent |C|
_, _ = s.Write(buf[i:])
// We need to write the chunk number if we're past the first chunk.
if s.buf != nil {
// Write last remaining chunk(s)
var cv [32]byte
if s.lanes == 1 {
if s.offset != 0 {
_, _ = s.leaf.Read(cv[:])
_, _ = s.stalk.Write(cv[:])
s.chunk++
}
} else {
remainingBuf := s.buf[:s.offset]
for len(remainingBuf) > 0 {
h := sha3.NewTurboShake128(0x0B)
to := chunkSize
if len(remainingBuf) < to {
to = len(remainingBuf)
}
_, _ = h.Write(remainingBuf[:to])
_, _ = h.Read(cv[:])
_, _ = s.stalk.Write(cv[:])
s.chunk++
remainingBuf = remainingBuf[to:]
}
}
// Write length_encode( chunk )
binary.BigEndian.PutUint64(buf[:8], uint64(s.chunk))
// Find first non-zero digit in big endian encoding of number of chunks
i = 0
for buf[i] == 0 && i < 8 {
i++
}
buf[8] = byte(8 - i) // number of bytes to represent number of chunks.
_, _ = s.stalk.Write(buf[i:])
_, _ = s.stalk.Write([]byte{0xff, 0xff})
}
}
return s.stalk.Read(p)
}
|