1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
package p503
import (
"bytes"
. "github.com/cloudflare/sidh/internal/isogeny"
"testing"
"testing/quick"
)
func TestOne(t *testing.T) {
var tmp Fp2Element
kFieldOps.Mul(&tmp, &P503_OneFp2, &affine_xP)
if !VartimeEqFp2(&tmp, &affine_xP) {
t.Error("Not equal 1")
}
}
// This test is here only to ensure that ScalarMult helper works correctly
func TestScalarMultVersusSage(t *testing.T) {
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P503_OneFp2}
xP = ScalarMult(&curve, &xP, mScalarBytes[:]) // = x([m]P)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(&affine_xaP, affine_xQ) {
t.Error("\nExpected\n", affine_xaP, "\nfound\n", affine_xQ)
}
}
func Test_jInvariant(t *testing.T) {
var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
var jbufRes [P503_SharedSecretSize]byte
var jbufExp [P503_SharedSecretSize]byte
// Computed using Sage
// j = 3674553797500778604587777859668542828244523188705960771798425843588160903687122861541242595678107095655647237100722594066610650373491179241544334443939077738732728884873568393760629500307797547379838602108296735640313894560419*i + 3127495302417548295242630557836520229396092255080675419212556702820583041296798857582303163183558315662015469648040494128968509467224910895884358424271180055990446576645240058960358037224785786494172548090318531038910933793845
var known_j = Fp2Element{
A: FpElement{0x2c441d03b72e27c, 0xf2c6748151dbf84, 0x3a774f6191070e, 0xa7c6212c9c800ba6, 0x23921b5cf09abc27, 0x9e1baefbb3cd4265, 0x8cd6a289f12e10dc, 0x3fa364128cf87e},
B: FpElement{0xe7497ac2bf6b0596, 0x629ee01ad23bd039, 0x95ee11587a119fa7, 0x572fb28a24772269, 0x3c00410b6c71567e, 0xe681e83a345f8a34, 0x65d21b1d96bd2d52, 0x7889a47e58901},
}
kCurveOps.Jinvariant(&curve, jbufRes[:])
kCurveOps.Fp2ToBytes(jbufExp[:], &known_j)
if !bytes.Equal(jbufRes[:], jbufExp[:]) {
t.Error("Computed incorrect j-invariant: found\n", jbufRes, "\nexpected\n", jbufExp)
}
}
func TestProjectivePointVartimeEq(t *testing.T) {
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P503_OneFp2}
xQ := xP
// Scale xQ, which results in the same projective point
kFieldOps.Mul(&xQ.X, &xQ.X, &curve_A)
kFieldOps.Mul(&xQ.Z, &xQ.Z, &curve_A)
if !VartimeEqProjFp2(&xP, &xQ) {
t.Error("Expected the scaled point to be equal to the original")
}
}
func TestPointDoubleVersusSage(t *testing.T) {
var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P503_OneFp2}
kCurveOps.Pow2k(&xP, ¶ms, 1)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xQ, &affine_xP2) {
t.Error("\nExpected\n", affine_xP2, "\nfound\n", affine_xQ)
}
}
func TestPointMul4VersusSage(t *testing.T) {
var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P503_OneFp2}
kCurveOps.Pow2k(&xP, ¶ms, 2)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xQ, &affine_xP4) {
t.Error("\nExpected\n", affine_xP4, "\nfound\n", affine_xQ)
}
}
func TestPointMul9VersusSage(t *testing.T) {
var params = kCurveOps.CalcCurveParamsEquiv3(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P503_OneFp2}
kCurveOps.Pow3k(&xP, ¶ms, 2)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xQ, &affine_xP9) {
t.Error("\nExpected\n", affine_xP9, "\nfound\n", affine_xQ)
}
}
func TestPointPow2kVersusScalarMult(t *testing.T) {
var xP, xQ, xR ProjectivePoint
var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
xP = ProjectivePoint{X: affine_xP, Z: P503_OneFp2}
xQ = xP
kCurveOps.Pow2k(&xQ, ¶ms, 5)
xR = ScalarMult(&curve, &xP, []byte{32})
affine_xQ := xQ.ToAffine(kCurveOps) // = x([32]P)
affine_xR := xR.ToAffine(kCurveOps) // = x([32]P)
if !VartimeEqFp2(affine_xQ, affine_xR) {
t.Error("\nExpected\n", affine_xQ, "\nfound\n", affine_xR)
}
}
func TestPointTripleVersusAddDouble(t *testing.T) {
tripleEqualsAddDouble := func(params GeneratedTestParams) bool {
var P2, P3, P2plusP ProjectivePoint
eqivParams4 := kCurveOps.CalcCurveParamsEquiv4(¶ms.Cparam)
eqivParams3 := kCurveOps.CalcCurveParamsEquiv3(¶ms.Cparam)
P2 = params.Point
P3 = params.Point
kCurveOps.Pow2k(&P2, &eqivParams4, 1) // = x([2]P)
kCurveOps.Pow3k(&P3, &eqivParams3, 1) // = x([3]P)
P2plusP = AddProjFp2(&P2, ¶ms.Point, ¶ms.Point) // = x([2]P + P)
return VartimeEqProjFp2(&P3, &P2plusP)
}
if err := quick.Check(tripleEqualsAddDouble, quickCheckConfig); err != nil {
t.Error(err)
}
}
func BenchmarkThreePointLadder255BitScalar(b *testing.B) {
var mScalarBytes = [...]uint8{203, 155, 185, 191, 131, 228, 50, 178, 207, 191, 61, 141, 174, 173, 207, 243, 159, 243, 46, 163, 19, 102, 69, 92, 36, 225, 0, 37, 114, 19, 191, 0}
for n := 0; n < b.N; n++ {
kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], 255, mScalarBytes[:])
}
}
|