1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
package p503
import (
. "github.com/cloudflare/sidh/internal/isogeny"
)
type fp503Ops struct{}
func FieldOperations() FieldOps {
return &fp503Ops{}
}
func (fp503Ops) Add(dest, lhs, rhs *Fp2Element) {
fp503AddReduced(&dest.A, &lhs.A, &rhs.A)
fp503AddReduced(&dest.B, &lhs.B, &rhs.B)
}
func (fp503Ops) Sub(dest, lhs, rhs *Fp2Element) {
fp503SubReduced(&dest.A, &lhs.A, &rhs.A)
fp503SubReduced(&dest.B, &lhs.B, &rhs.B)
}
func (fp503Ops) Mul(dest, lhs, rhs *Fp2Element) {
// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
a := &lhs.A
b := &lhs.B
c := &rhs.A
d := &rhs.B
// We want to compute
//
// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
//
// Use Karatsuba's trick: note that
//
// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
//
// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
var ac, bd FpElementX2
fp503Mul(&ac, a, c) // = a*c*R*R
fp503Mul(&bd, b, d) // = b*d*R*R
var b_minus_a, c_minus_d FpElement
fp503SubReduced(&b_minus_a, b, a) // = (b-a)*R
fp503SubReduced(&c_minus_d, c, d) // = (c-d)*R
var ad_plus_bc FpElementX2
fp503Mul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R
fp503X2AddLazy(&ad_plus_bc, &ad_plus_bc, &ac) // = ((b-a)*(c-d) + a*c)*R*R
fp503X2AddLazy(&ad_plus_bc, &ad_plus_bc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R
fp503MontgomeryReduce(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p
var ac_minus_bd FpElementX2
fp503X2SubLazy(&ac_minus_bd, &ac, &bd) // = (a*c - b*d)*R*R
fp503MontgomeryReduce(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p
}
// Set dest = 1/x
//
// Allowed to overlap dest with x.
//
// Returns dest to allow chaining operations.
func (fp503Ops) Inv(dest, x *Fp2Element) {
a := &x.A
b := &x.B
// We want to compute
//
// 1 1 (a - bi) (a - bi)
// -------- = -------- -------- = -----------
// (a + bi) (a + bi) (a - bi) (a^2 + b^2)
//
// Letting c = 1/(a^2 + b^2), this is
//
// 1/(a+bi) = a*c - b*ci.
var asq_plus_bsq primeFieldElement
var asq, bsq FpElementX2
fp503Mul(&asq, a, a) // = a*a*R*R
fp503Mul(&bsq, b, b) // = b*b*R*R
fp503X2AddLazy(&asq, &asq, &bsq) // = (a^2 + b^2)*R*R
fp503MontgomeryReduce(&asq_plus_bsq.A, &asq) // = (a^2 + b^2)*R mod p
// Now asq_plus_bsq = a^2 + b^2
inv := asq_plus_bsq
inv.Mul(&asq_plus_bsq, &asq_plus_bsq)
inv.P34(&inv)
inv.Mul(&inv, &inv)
inv.Mul(&inv, &asq_plus_bsq)
var ac FpElementX2
fp503Mul(&ac, a, &inv.A)
fp503MontgomeryReduce(&dest.A, &ac)
var minus_b FpElement
fp503SubReduced(&minus_b, &minus_b, b)
var minus_bc FpElementX2
fp503Mul(&minus_bc, &minus_b, &inv.A)
fp503MontgomeryReduce(&dest.B, &minus_bc)
}
func (fp503Ops) Square(dest, x *Fp2Element) {
a := &x.A
b := &x.B
// We want to compute
//
// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
var a2, a_plus_b, a_minus_b FpElement
fp503AddReduced(&a2, a, a) // = a*R + a*R = 2*a*R
fp503AddReduced(&a_plus_b, a, b) // = a*R + b*R = (a+b)*R
fp503SubReduced(&a_minus_b, a, b) // = a*R - b*R = (a-b)*R
var asq_minus_bsq, ab2 FpElementX2
fp503Mul(&asq_minus_bsq, &a_plus_b, &a_minus_b) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
fp503Mul(&ab2, &a2, b) // = 2*a*b*R*R
fp503MontgomeryReduce(&dest.A, &asq_minus_bsq) // = (a^2 - b^2)*R mod p
fp503MontgomeryReduce(&dest.B, &ab2) // = 2*a*b*R mod p
}
// In case choice == 1, performs following swap in constant time:
// xPx <-> xQx
// xPz <-> xQz
// Otherwise returns xPx, xPz, xQx, xQz unchanged
func (fp503Ops) CondSwap(xPx, xPz, xQx, xQz *Fp2Element, choice uint8) {
fp503ConditionalSwap(&xPx.A, &xQx.A, choice)
fp503ConditionalSwap(&xPx.B, &xQx.B, choice)
fp503ConditionalSwap(&xPz.A, &xQz.A, choice)
fp503ConditionalSwap(&xPz.B, &xQz.B, choice)
}
// Converts values in x.A and x.B to Montgomery domain
// x.A = x.A * R mod p
// x.B = x.B * R mod p
// Performs v = v*R^2*R^(-1) mod p, for both x.A and x.B
func (fp503Ops) ToMontgomery(x *Fp2Element) {
var aRR FpElementX2
// convert to montgomery domain
fp503Mul(&aRR, &x.A, &p503R2) // = a*R*R
fp503MontgomeryReduce(&x.A, &aRR) // = a*R mod p
fp503Mul(&aRR, &x.B, &p503R2)
fp503MontgomeryReduce(&x.B, &aRR)
}
// Converts values in x.A and x.B from Montgomery domain
// a = x.A mod p
// b = x.B mod p
//
// After returning from the call x is not modified.
func (fp503Ops) FromMontgomery(x *Fp2Element, out *Fp2Element) {
var aR FpElementX2
// convert from montgomery domain
// TODO: make fpXXXMontgomeryReduce use stack instead of reusing aR
// so that we don't have do this copy here
copy(aR[:], x.A[:])
fp503MontgomeryReduce(&out.A, &aR) // = a mod p in [0, 2p)
fp503StrongReduce(&out.A) // = a mod p in [0, p)
for i := range aR {
aR[i] = 0
}
copy(aR[:], x.B[:])
fp503MontgomeryReduce(&out.B, &aR)
fp503StrongReduce(&out.B)
}
//------------------------------------------------------------------------------
// Prime Field
//------------------------------------------------------------------------------
// Represents an element of the prime field F_p.
type primeFieldElement struct {
// This field element is in Montgomery form, so that the value `A` is
// represented by `aR mod p`.
A FpElement
}
// Set dest = lhs * rhs.
//
// Allowed to overlap lhs or rhs with dest.
//
// Returns dest to allow chaining operations.
func (dest *primeFieldElement) Mul(lhs, rhs *primeFieldElement) *primeFieldElement {
a := &lhs.A // = a*R
b := &rhs.A // = b*R
var ab FpElementX2
fp503Mul(&ab, a, b) // = a*b*R*R
fp503MontgomeryReduce(&dest.A, &ab) // = a*b*R mod p
return dest
}
// Set dest = x^(2^k), for k >= 1, by repeated squarings.
//
// Allowed to overlap x with dest.
//
// Returns dest to allow chaining operations.
func (dest *primeFieldElement) Pow2k(x *primeFieldElement, k uint8) *primeFieldElement {
dest.Mul(x, x)
for i := uint8(1); i < k; i++ {
dest.Mul(dest, dest)
}
return dest
}
// Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x).
// Uses variation of sliding-window algorithm from with window size
// of 5 and least to most significant bit sliding (left-to-right)
// See HAC 14.85 for general description.
//
// Allowed to overlap x with dest.
//
// Returns dest to allow chaining operations.
func (dest *primeFieldElement) P34(x *primeFieldElement) *primeFieldElement {
// Sliding-window strategy computed with etc/scripts/sliding_window_strat_calc.py
//
// This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy)
// multiplications.
powStrategy := []uint8{1, 12, 5, 5, 2, 7, 11, 3, 8, 4, 11, 4, 7, 5, 6, 3, 7, 5, 7, 2, 12, 5, 6, 4, 6, 8, 6, 4, 7, 5, 5, 8, 5, 8, 5, 5, 8, 9, 3, 6, 2, 10, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3}
mulStrategy := []uint8{0, 12, 11, 10, 0, 1, 8, 3, 7, 1, 8, 3, 6, 7, 14, 2, 14, 14, 9, 0, 13, 9, 15, 5, 12, 7, 13, 7, 15, 6, 7, 9, 0, 5, 7, 6, 8, 8, 3, 7, 0, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3}
// Precompute lookup table of odd multiples of x for window
// size k=5.
lookup := [16]primeFieldElement{}
xx := &primeFieldElement{}
xx.Mul(x, x)
lookup[0] = *x
for i := 1; i < 16; i++ {
lookup[i].Mul(&lookup[i-1], xx)
}
// Now lookup = {x, x^3, x^5, ... }
// so that lookup[i] = x^{2*i + 1}
// so that lookup[k/2] = x^k, for odd k
*dest = lookup[mulStrategy[0]]
for i := uint8(1); i < uint8(len(powStrategy)); i++ {
dest.Pow2k(dest, powStrategy[i])
dest.Mul(dest, &lookup[mulStrategy[i]])
}
return dest
}
|