File: utils_test.go

package info (click to toggle)
golang-github-cloudflare-sidh 1.0%2Bgit20190228.d2f0f90-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,128 kB
  • sloc: asm: 5,616; makefile: 63
file content (335 lines) | stat: -rw-r--r-- 16,029 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
package p503

// Tools used for testing and debugging

import (
	. "github.com/cloudflare/sidh/internal/isogeny"
	"math/big"
	"math/rand"
	"reflect"
	"testing/quick"
)

/* -------------------------------------------------------------------------
   Underlying field configuration
   -------------------------------------------------------------------------*/
var (
	kFieldOps = FieldOperations()
	kParams   = &SidhParams{
		Op:      kFieldOps,
		OneFp2:  P503_OneFp2,
		HalfFp2: P503_HalfFp2,
		Bytelen: P503_Bytelen,
	}
	kCurveOps = &CurveOperations{Params: kParams}
)

/* -------------------------------------------------------------------------
   Configure testing/quick
   -------------------------------------------------------------------------*/
var (
	quickCheckScaleFactor = uint8(3)
	quickCheckConfig      = &quick.Config{MaxCount: (1 << (12 + quickCheckScaleFactor))}
)

/* -------------------------------------------------------------------------
   Structure used by tests
   -------------------------------------------------------------------------*/
type GeneratedTestParams struct {
	Point   ProjectivePoint
	Cparam  ProjectiveCurveParameters
	ExtElem Fp2Element
}

// A = 8752234765512331234913716743014562460822083005386252003333602919474238975785850965349950219277942402920758585086620525443539725921333735154674119646075*i + 6339624979889725406021454983012408976766782818694212228554611573314701271183857175866122275755278397694585249002282183018114967373119429936587424396917
var curve_A = Fp2Element{
	A: FpElement{0xd9816986a543095f, 0xa78cb1d7217bec21, 0x9595dc97b74ea70, 0x9120a1da6b42797d, 0x59ef9d903f74e47c, 0x4c58a4cdc45b6d0b, 0x816d5213aaf7ee6d, 0x3892fee6bb7343},
	B: FpElement{0x28c5288acbedf11b, 0x2143a438c86f6c68, 0x7cb5c4ae9c4c8e34, 0xb478aea445eed48b, 0x24d5c175776db478, 0x234582f8676c0ebe, 0x56234267b625fb08, 0x2c6e58d84b1192}}

// C = 10458464853790890798085664692909194316288127038910691163573355876336993883402795907795767791362493831987298578966325154262747805705783782806176495638177*i + 7770984753616185271325854825309278833018655051139367603077592443785629339985729818288672809062782315510526648882226172896710704020683893684611137718845
var curve_C = Fp2Element{
	A: FpElement{0xe05948236f2f913b, 0xc45da9ad1219a255, 0x7a568972a32fc1d0, 0x30f00bdd7071c3b1, 0x3b761b8dac2c98bc, 0x760f21b2179737b6, 0x13217e6656a13476, 0x2606b798e685aa},
	B: FpElement{0x1c0171f78820052e, 0x440b7f7087e57140, 0xe0510c07b31b0e96, 0xd0cf489b2ac4aea9, 0x4fb328f1c1fdf783, 0xb3b4912342951cb7, 0x70a4b64e81961c42, 0x33eed63cf07181}}

// x(P) = 9720237205826983370867050298878715935679372786589878620121159082290288918688002583435964840822877971257659901481591644347943354235932355923042390796255*i + 634577413124118560098123299804750904956499531431297942628887930019161512075536652691244843248133437326050395005054997679717801535474938466995392156605
var affine_xP = Fp2Element{
	A: FpElement{0xb606d954d407faf2, 0x58a1ef6cd213a203, 0x9823b55033e62f7b, 0x59cafc060d5e25a1, 0x529685f1753526fc, 0xc2eac3d219989c7d, 0xc5e30c75dfd343a0, 0x378285adc968a0},
	B: FpElement{0x6670f36db977b9da, 0xa07e2fdda5e1a7f0, 0xf367a7a722aed87d, 0x6c269e06d595cd10, 0x8379aa6092d87700, 0x57276ce3557ee7ae, 0xac8107bfbcd28993, 0x3d6f98869617a7}}

// x(Q) = 613162677562606602867371958793876971530136728660199185642812914351735322828980793298955764087721218995329689800176835576008483782305021671417330230966*i + 12939479853552958669415184882894789433224467828463058020095712989798268661016843892597050485554155971441665589419365957826417334087966365414056706471602
var affine_xQ = Fp2Element{
	A: FpElement{0xd3d14533cb0db45c, 0xdaf10b9f5fb037cf, 0x9562c31985823562, 0xb79b75e2bf5635a5, 0x83d38fb1669c2d9, 0x5e67117a35a57cbd, 0x4b94ed6c3cbf54a4, 0x3f47706b62778d},
	B: FpElement{0x1c766c0e7ed612d6, 0x2f3b42979e8efd86, 0xd82bac0006415ee7, 0x20cfe3bec0970042, 0x8f6628807e862bf9, 0xac4f82d13fddd9c5, 0x70b756e4bac1fa85, 0x350c02508e50dc}}

var affine_xPmQ = Fp2Element{
	A: FpElement{0x7295ac0e8a5531c8, 0xc02afbef6cdf51a8, 0x84d0c1bb8d80624f, 0x26abbf06c61e814b, 0xada277883fbdae07, 0x63b6739db68df3a7, 0x3554670381bcfcc6, 0x33419be255bbc6},
	B: FpElement{0xff9df35102da997a, 0xf9b920b2d8bd6210, 0x43d1514920e73bfb, 0x624c6fd6ef16da74, 0xeb535968ed0d1286, 0x9243e6ce29a636e6, 0x1849ed96cb7940e0, 0x1e4b495933b675}}

var affine_xP2 = Fp2Element{
	A: FpElement{0x4e1133c2b3855902, 0x875a775c67597fbb, 0xd17eb74254141abb, 0x1d5a464a4f3391f5, 0x24405c332811d007, 0x7e47e3eb489a7372, 0x65b130dfd9efe605, 0xfa69fac179803},
	B: FpElement{0x329f5322e1be51ee, 0x9004dca8132ebd6f, 0x7cd87e447ca8a7b6, 0x10a6ec02c38ce69e, 0x8cef2ed7d112ac46, 0x5f385a9fc4b57cd7, 0x68a366354fe7a32e, 0x2223c1455486ac}}

var affine_xP3 = Fp2Element{
	A: FpElement{0x74a2894cccbe287d, 0xa50e3ec842e13fce, 0xd42ea4d3f1b7ad0b, 0xa4943d50d306f99e, 0xf83e9c0955b08c33, 0xffd8e313402b9380, 0x967b315db0b2e6e, 0x3a0945883df3b4},
	B: FpElement{0xa9f610420a81c5ba, 0xbeb84b3ded2b4e75, 0x9fd6cea494470a70, 0x2fb0075e71900b0e, 0x63a0beb6abf3ca3d, 0xeb3e171798959f2e, 0x2209801eb702d40e, 0x36f8c4603e0fdb}}

var affine_xP4 = Fp2Element{
	A: FpElement{0x4eb695d34b46be8f, 0xfb5e76c58585f2d2, 0xa41f8aafa6dbb531, 0x4db82f5db5cfd144, 0x14dab0e3200cbba0, 0x430381706a279f81, 0xdf6707a57161f81, 0x44740f17197c3},
	B: FpElement{0xa2473705cdb6d4e9, 0xfa3cd67b9c15502c, 0xf0928166d0c5cee1, 0x6150aba0c874faaa, 0x6c0b18d6d92f9034, 0xcff71d340fc1e72e, 0x19a47027af917587, 0x25ed4bad443b8f}}

var affine_xP9 = Fp2Element{
	A: FpElement{0x112da30e288217e0, 0x5b336d527320a5f7, 0xbbf4d9403b68e3c6, 0x55eccb31c40b359c, 0x8907129ab69b3203, 0x69cc8c750125a915, 0xa41a38e6f530c0e1, 0xbe68e23af1b8d},
	B: FpElement{0x472c603765964213, 0xe4e64995b0769754, 0x4515583c74a6dd24, 0xff7c57f5818363a2, 0xbeaeb24662a92177, 0x8a54fa61fbf24c68, 0xa85542049eb45e12, 0x2b54caf655e285}}

// m = 3904534670189250445536401319770569077681088033069864532895
var mScalarBytes = [...]uint8{0x9f, 0x3b, 0xe7, 0xf9, 0xf4, 0x7c, 0xe6, 0xce, 0x79, 0x3e, 0x3d, 0x9f, 0x9f, 0x3b, 0xe7, 0xf9, 0xf4, 0x7c, 0xe6, 0xce, 0x79, 0x3e, 0x3d, 0x9f}

var affine_xaP = Fp2Element{
	A: FpElement{0x100a82c2be58e28b, 0x70ee7b57f40d9103, 0xb9f21d6327411cbb, 0x976b2a65166591cb, 0x35435bd4614ca404, 0x15f862a9c6f51469, 0x14d9ccfe634f374a, 0x31234988b0766c},
	B: FpElement{0x323a3a13113b35f8, 0xc949dad174586c8f, 0x1c5ed3b1263143c, 0x13ba9870c9b5bab8, 0x79fb89a31cfe7f19, 0xa8af6d4b5d947ed2, 0xcff00f80d7b67a56, 0xfdfcb136bff75}}

// Inputs for testing 3-point-ladder
var threePointLadderInputs = []ProjectivePoint{
	// x(P)
	ProjectivePoint{
		X: Fp2Element{
			A: FpElement{0x43941FA9244C059E, 0xD1F337D076941189, 0x6B6A8B3A8763C96A, 0x6DF569708D6C9482, 0x487EE5707A52F4AA, 0xDE396F6E2559689E, 0xE5EE3895A8991469, 0x2B0946695790A8},
			B: FpElement{0xAB552C0FDAED092E, 0x7DF895E43E7DCB1C, 0x35C700E761920C4B, 0xCC5807DD70DC117A, 0x0884039A5A8DB18A, 0xD04620B3D0738052, 0xA200835605138F10, 0x3FF2E59B2FDC6A}},
		Z: P503_OneFp2,
	},
	// x(Q)
	ProjectivePoint{
		X: Fp2Element{
			A: FpElement{0x77015826982BA1FD, 0x44024489673471E4, 0x1CAA2A5F4D5DA63B, 0xA183C07E50738C01, 0x8B97782D4E1A0DE6, 0x9B819522FBC38280, 0x0BDA46A937FB7B8A, 0x3B3614305914DF},
			B: FpElement{0xBF0366E97B3168D9, 0xAA522AC3879CEF0F, 0x0AF5EC975BD035C8, 0x1F26FEE7BBAC165C, 0xA0EE6A637724A6AB, 0xFB52101E36BA3A38, 0xD29CF5E376E17376, 0x1374A50DF57071}},
		Z: P503_OneFp2,
	},
	// x(P-Q)
	ProjectivePoint{
		X: Fp2Element{
			A: FpElement{0xD99279BBD41EA559, 0x35CF18E72F578214, 0x90473B1DC77F73E8, 0xBFFEA930B25D7F66, 0xFD558EA177B900B2, 0x7CFAD273A782A23E, 0x6B1F610822E0F611, 0x26D2D2EF9619B5},
			B: FpElement{0x534F83651CBCC75D, 0x591FB4757AED5D08, 0x0B04353D40BED542, 0x829A94703AAC9139, 0x0F9C2E6D7663EB5B, 0x5D2D0F90C283F746, 0x34C872AA12A7676E, 0x0ECDB605FBFA16}},
		Z: P503_OneFp2,
	},
}
var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}

// prime p503
var p503BigIntPrime, _ = new(big.Int).SetString("13175843156907117380839252916199345042492186767578363998445663477035843932020761233518914911546024351608607150390087656982982306331019593961154237431807", 10)

/* -------------------------------------------------------------------------
   Values used by benchmarking tools
   -------------------------------------------------------------------------*/

// Package-level storage for this field element is intended to deter
// compiler optimizations.
var (
	benchmarkFpElement   FpElement
	benchmarkFpElementX2 FpElementX2
	bench_x              = FpElement{17026702066521327207, 5108203422050077993, 10225396685796065916, 11153620995215874678, 6531160855165088358, 15302925148404145445, 1248821577836769963, 9789766903037985294, 7493111552032041328, 10838999828319306046, 18103257655515297935, 27403304611634}
	bench_y              = FpElement{4227467157325093378, 10699492810770426363, 13500940151395637365, 12966403950118934952, 16517692605450415877, 13647111148905630666, 14223628886152717087, 7167843152346903316, 15855377759596736571, 4300673881383687338, 6635288001920617779, 30486099554235}
	bench_z              = FpElementX2{1595347748594595712, 10854920567160033970, 16877102267020034574, 12435724995376660096, 3757940912203224231, 8251999420280413600, 3648859773438820227, 17622716832674727914, 11029567000887241528, 11216190007549447055, 17606662790980286987, 4720707159513626555, 12887743598335030915, 14954645239176589309, 14178817688915225254, 1191346797768989683, 12629157932334713723, 6348851952904485603, 16444232588597434895, 7809979927681678066, 14642637672942531613, 3092657597757640067, 10160361564485285723, 240071237}
)

/* -------------------------------------------------------------------------
   Helpers
   -------------------------------------------------------------------------*/

// Given xP = x(P), xQ = x(Q), and xPmQ = x(P-Q), compute xR = x(P+Q).
//
// Returns xR to allow chaining.  Safe to overlap xP, xQ, xR.
func AddProjFp2(xP, xQ, xPmQ *ProjectivePoint) ProjectivePoint {
	// Algorithm 1 of Costello-Smith.
	var v0, v1, v2, v3, v4 Fp2Element
	var xR ProjectivePoint
	kFieldOps.Add(&v0, &xP.X, &xP.Z) // X_P + Z_P
	kFieldOps.Sub(&v1, &xQ.X, &xQ.Z)
	kFieldOps.Mul(&v1, &v1, &v0)     // (X_Q - Z_Q)(X_P + Z_P)
	kFieldOps.Sub(&v0, &xP.X, &xP.Z) // X_P - Z_P
	kFieldOps.Add(&v2, &xQ.X, &xQ.Z)
	kFieldOps.Mul(&v2, &v2, &v0) // (X_Q + Z_Q)(X_P - Z_P)
	kFieldOps.Add(&v3, &v1, &v2)
	kFieldOps.Square(&v3, &v3) // 4(X_Q X_P - Z_Q Z_P)^2
	kFieldOps.Sub(&v4, &v1, &v2)
	kFieldOps.Square(&v4, &v4)         // 4(X_Q Z_P - Z_Q X_P)^2
	kFieldOps.Mul(&v0, &xPmQ.Z, &v3)   // 4X_{P-Q}(X_Q X_P - Z_Q Z_P)^2
	kFieldOps.Mul(&xR.Z, &xPmQ.X, &v4) // 4Z_{P-Q}(X_Q Z_P - Z_Q X_P)^2
	xR.X = v0
	return xR
}

// Given xP = x(P) and cached curve parameters Aplus2C = A + 2*C, C4 = 4*C,
// compute xQ = x([2]P).
//
// Returns xQ to allow chaining.  Safe to overlap xP, xQ.
func DoubleProjFp2(xP *ProjectivePoint, Aplus2C, C4 *Fp2Element) ProjectivePoint {
	// Algorithm 2 of Costello-Smith, amended to work with projective curve coefficients.
	var v1, v2, v3, xz4 Fp2Element
	var xQ ProjectivePoint
	kFieldOps.Add(&v1, &xP.X, &xP.Z) // (X+Z)^2
	kFieldOps.Square(&v1, &v1)
	kFieldOps.Sub(&v2, &xP.X, &xP.Z) // (X-Z)^2
	kFieldOps.Square(&v2, &v2)
	kFieldOps.Sub(&xz4, &v1, &v2)     // 4XZ = (X+Z)^2 - (X-Z)^2
	kFieldOps.Mul(&v2, &v2, C4)       // 4C(X-Z)^2
	kFieldOps.Mul(&xQ.X, &v1, &v2)    // 4C(X+Z)^2(X-Z)^2
	kFieldOps.Mul(&v3, &xz4, Aplus2C) // 4XZ(A + 2C)
	kFieldOps.Add(&v3, &v3, &v2)      // 4XZ(A + 2C) + 4C(X-Z)^2
	kFieldOps.Mul(&xQ.Z, &v3, &xz4)   // (4XZ(A + 2C) + 4C(X-Z)^2)4XZ
	// Now (xQ.x : xQ.z)
	//   = (4C(X+Z)^2(X-Z)^2 : (4XZ(A + 2C) + 4C(X-Z)^2)4XZ )
	//   = ((X+Z)^2(X-Z)^2 : (4XZ((A + 2C)/4C) + (X-Z)^2)4XZ )
	//   = ((X+Z)^2(X-Z)^2 : (4XZ((a + 2)/4) + (X-Z)^2)4XZ )
	return xQ
}

// Given x(P) and a scalar m in little-endian bytes, compute x([m]P) using the
// Montgomery ladder.  This is described in Algorithm 8 of Costello-Smith.
//
// This function's execution time is dependent only on the byte-length of the
// input scalar.  All scalars of the same input length execute in uniform time.
// The scalar can be padded with zero bytes to ensure a uniform length.
//
// Safe to overlap the source with the destination.
func ScalarMult(curve *ProjectiveCurveParameters, xP *ProjectivePoint, scalar []uint8) ProjectivePoint {
	var x0, x1, tmp ProjectivePoint
	var Aplus2C, C4 Fp2Element

	kFieldOps.Add(&Aplus2C, &curve.C, &curve.C) // = 2*C
	kFieldOps.Add(&C4, &Aplus2C, &Aplus2C)      // = 4*C
	kFieldOps.Add(&Aplus2C, &Aplus2C, &curve.A) // = 2*C + A

	x0.X = P503_OneFp2
	x1 = *xP

	// Iterate over the bits of the scalar, top to bottom
	prevBit := uint8(0)
	for i := len(scalar) - 1; i >= 0; i-- {
		scalarByte := scalar[i]
		for j := 7; j >= 0; j-- {
			bit := (scalarByte >> uint(j)) & 0x1
			kCurveOps.Params.Op.CondSwap(&x0.X, &x0.Z, &x1.X, &x1.Z, (bit ^ prevBit))
			//sProjectivePointConditionalSwap(&x0, &x1, (bit ^ prevBit))
			tmp = DoubleProjFp2(&x0, &Aplus2C, &C4)
			x1 = AddProjFp2(&x0, &x1, xP)
			x0 = tmp
			prevBit = bit
		}
	}
	// now prevBit is the lowest bit of the scalar
	kCurveOps.Params.Op.CondSwap(&x0.X, &x0.Z, &x1.X, &x1.Z, prevBit)
	return x0
}

// Returns true if lhs = rhs.  Takes variable time.
func VartimeEqFp2(lhs, rhs *Fp2Element) bool {
	a := *lhs
	b := *rhs

	fp503StrongReduce(&a.A)
	fp503StrongReduce(&a.B)
	fp503StrongReduce(&b.A)
	fp503StrongReduce(&b.B)

	eq := true
	for i := 0; i < len(a.A) && eq; i++ {
		eq = eq && (a.A[i] == b.A[i])
		eq = eq && (a.B[i] == b.B[i])
	}
	return eq
}

// Returns true if lhs = rhs.  Takes variable time.
func VartimeEqProjFp2(lhs, rhs *ProjectivePoint) bool {
	var t0, t1 Fp2Element
	kFieldOps.Mul(&t0, &lhs.X, &rhs.Z)
	kFieldOps.Mul(&t1, &lhs.Z, &rhs.X)
	return VartimeEqFp2(&t0, &t1)
}

func (GeneratedTestParams) generateFp2p503(rand *rand.Rand) Fp2Element {
	// Generation strategy: low limbs taken from [0,2^64); high limb
	// taken from smaller range
	//
	// Size hint is ignored since all elements are fixed size.
	//
	// Field elements taken in range [0,2p).  Emulate this by capping
	// the high limb by the top digit of 2*p-1:
	//
	// sage: (2*p-1).digits(2^64)[-1]
	// 36255204122967100
	//
	// This still allows generating values >= 2p, but hopefully that
	// excess is OK (and if it's not, we'll find out, because it's for
	// testing...)
	//
	highLimb := rand.Uint64() % 36255204122967100
	fpElementGen := func() FpElement {
		return FpElement{
			rand.Uint64(),
			rand.Uint64(),
			rand.Uint64(),
			rand.Uint64(),
			rand.Uint64(),
			rand.Uint64(),
			rand.Uint64(),
			highLimb,
		}
	}
	return Fp2Element{A: fpElementGen(), B: fpElementGen()}
}

func (c GeneratedTestParams) Generate(rand *rand.Rand, size int) reflect.Value {
	return reflect.ValueOf(
		GeneratedTestParams{
			ProjectivePoint{
				X: c.generateFp2p503(rand),
				Z: c.generateFp2p503(rand),
			},
			ProjectiveCurveParameters{
				A: c.generateFp2p503(rand),
				C: c.generateFp2p503(rand),
			},
			c.generateFp2p503(rand),
		})
}

func (x primeFieldElement) Generate(rand *rand.Rand, size int) reflect.Value {
	return reflect.ValueOf(primeFieldElement{A: new(GeneratedTestParams).generateFp2p503(rand).A})
}

// Convert an FpElement to a big.Int for testing.  Because this is only
// for testing, no big.Int to FpElement conversion is provided.
func radix64ToBigInt(x []uint64) *big.Int {
	radix := new(big.Int)
	// 2^64
	radix.UnmarshalText(([]byte)("18446744073709551616"))

	base := new(big.Int).SetUint64(1)
	val := new(big.Int).SetUint64(0)
	tmp := new(big.Int)

	for _, xi := range x {
		tmp.SetUint64(xi)
		tmp.Mul(tmp, base)
		val.Add(val, tmp)
		base.Mul(base, radix)
	}

	return val
}

func toBigInt(x *FpElement) *big.Int {
	// Convert from Montgomery form
	return toBigIntFromMontgomeryForm(x)
}

func toBigIntFromMontgomeryForm(x *FpElement) *big.Int {
	// Convert from Montgomery form
	a := FpElement{}
	aR := FpElementX2{}
	copy(aR[:], x[:])              // = a*R
	fp503MontgomeryReduce(&a, &aR) // = a mod p  in [0,2p)
	fp503StrongReduce(&a)          // = a mod p  in [0,p)
	return radix64ToBigInt(a[:])
}