1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
package p503
// Tools used for testing and debugging
import (
. "github.com/cloudflare/sidh/internal/isogeny"
"math/big"
"math/rand"
"reflect"
"testing/quick"
)
/* -------------------------------------------------------------------------
Underlying field configuration
-------------------------------------------------------------------------*/
var (
kFieldOps = FieldOperations()
kParams = &SidhParams{
Op: kFieldOps,
OneFp2: P503_OneFp2,
HalfFp2: P503_HalfFp2,
Bytelen: P503_Bytelen,
}
kCurveOps = &CurveOperations{Params: kParams}
)
/* -------------------------------------------------------------------------
Configure testing/quick
-------------------------------------------------------------------------*/
var (
quickCheckScaleFactor = uint8(3)
quickCheckConfig = &quick.Config{MaxCount: (1 << (12 + quickCheckScaleFactor))}
)
/* -------------------------------------------------------------------------
Structure used by tests
-------------------------------------------------------------------------*/
type GeneratedTestParams struct {
Point ProjectivePoint
Cparam ProjectiveCurveParameters
ExtElem Fp2Element
}
// A = 8752234765512331234913716743014562460822083005386252003333602919474238975785850965349950219277942402920758585086620525443539725921333735154674119646075*i + 6339624979889725406021454983012408976766782818694212228554611573314701271183857175866122275755278397694585249002282183018114967373119429936587424396917
var curve_A = Fp2Element{
A: FpElement{0xd9816986a543095f, 0xa78cb1d7217bec21, 0x9595dc97b74ea70, 0x9120a1da6b42797d, 0x59ef9d903f74e47c, 0x4c58a4cdc45b6d0b, 0x816d5213aaf7ee6d, 0x3892fee6bb7343},
B: FpElement{0x28c5288acbedf11b, 0x2143a438c86f6c68, 0x7cb5c4ae9c4c8e34, 0xb478aea445eed48b, 0x24d5c175776db478, 0x234582f8676c0ebe, 0x56234267b625fb08, 0x2c6e58d84b1192}}
// C = 10458464853790890798085664692909194316288127038910691163573355876336993883402795907795767791362493831987298578966325154262747805705783782806176495638177*i + 7770984753616185271325854825309278833018655051139367603077592443785629339985729818288672809062782315510526648882226172896710704020683893684611137718845
var curve_C = Fp2Element{
A: FpElement{0xe05948236f2f913b, 0xc45da9ad1219a255, 0x7a568972a32fc1d0, 0x30f00bdd7071c3b1, 0x3b761b8dac2c98bc, 0x760f21b2179737b6, 0x13217e6656a13476, 0x2606b798e685aa},
B: FpElement{0x1c0171f78820052e, 0x440b7f7087e57140, 0xe0510c07b31b0e96, 0xd0cf489b2ac4aea9, 0x4fb328f1c1fdf783, 0xb3b4912342951cb7, 0x70a4b64e81961c42, 0x33eed63cf07181}}
// x(P) = 9720237205826983370867050298878715935679372786589878620121159082290288918688002583435964840822877971257659901481591644347943354235932355923042390796255*i + 634577413124118560098123299804750904956499531431297942628887930019161512075536652691244843248133437326050395005054997679717801535474938466995392156605
var affine_xP = Fp2Element{
A: FpElement{0xb606d954d407faf2, 0x58a1ef6cd213a203, 0x9823b55033e62f7b, 0x59cafc060d5e25a1, 0x529685f1753526fc, 0xc2eac3d219989c7d, 0xc5e30c75dfd343a0, 0x378285adc968a0},
B: FpElement{0x6670f36db977b9da, 0xa07e2fdda5e1a7f0, 0xf367a7a722aed87d, 0x6c269e06d595cd10, 0x8379aa6092d87700, 0x57276ce3557ee7ae, 0xac8107bfbcd28993, 0x3d6f98869617a7}}
// x(Q) = 613162677562606602867371958793876971530136728660199185642812914351735322828980793298955764087721218995329689800176835576008483782305021671417330230966*i + 12939479853552958669415184882894789433224467828463058020095712989798268661016843892597050485554155971441665589419365957826417334087966365414056706471602
var affine_xQ = Fp2Element{
A: FpElement{0xd3d14533cb0db45c, 0xdaf10b9f5fb037cf, 0x9562c31985823562, 0xb79b75e2bf5635a5, 0x83d38fb1669c2d9, 0x5e67117a35a57cbd, 0x4b94ed6c3cbf54a4, 0x3f47706b62778d},
B: FpElement{0x1c766c0e7ed612d6, 0x2f3b42979e8efd86, 0xd82bac0006415ee7, 0x20cfe3bec0970042, 0x8f6628807e862bf9, 0xac4f82d13fddd9c5, 0x70b756e4bac1fa85, 0x350c02508e50dc}}
var affine_xPmQ = Fp2Element{
A: FpElement{0x7295ac0e8a5531c8, 0xc02afbef6cdf51a8, 0x84d0c1bb8d80624f, 0x26abbf06c61e814b, 0xada277883fbdae07, 0x63b6739db68df3a7, 0x3554670381bcfcc6, 0x33419be255bbc6},
B: FpElement{0xff9df35102da997a, 0xf9b920b2d8bd6210, 0x43d1514920e73bfb, 0x624c6fd6ef16da74, 0xeb535968ed0d1286, 0x9243e6ce29a636e6, 0x1849ed96cb7940e0, 0x1e4b495933b675}}
var affine_xP2 = Fp2Element{
A: FpElement{0x4e1133c2b3855902, 0x875a775c67597fbb, 0xd17eb74254141abb, 0x1d5a464a4f3391f5, 0x24405c332811d007, 0x7e47e3eb489a7372, 0x65b130dfd9efe605, 0xfa69fac179803},
B: FpElement{0x329f5322e1be51ee, 0x9004dca8132ebd6f, 0x7cd87e447ca8a7b6, 0x10a6ec02c38ce69e, 0x8cef2ed7d112ac46, 0x5f385a9fc4b57cd7, 0x68a366354fe7a32e, 0x2223c1455486ac}}
var affine_xP3 = Fp2Element{
A: FpElement{0x74a2894cccbe287d, 0xa50e3ec842e13fce, 0xd42ea4d3f1b7ad0b, 0xa4943d50d306f99e, 0xf83e9c0955b08c33, 0xffd8e313402b9380, 0x967b315db0b2e6e, 0x3a0945883df3b4},
B: FpElement{0xa9f610420a81c5ba, 0xbeb84b3ded2b4e75, 0x9fd6cea494470a70, 0x2fb0075e71900b0e, 0x63a0beb6abf3ca3d, 0xeb3e171798959f2e, 0x2209801eb702d40e, 0x36f8c4603e0fdb}}
var affine_xP4 = Fp2Element{
A: FpElement{0x4eb695d34b46be8f, 0xfb5e76c58585f2d2, 0xa41f8aafa6dbb531, 0x4db82f5db5cfd144, 0x14dab0e3200cbba0, 0x430381706a279f81, 0xdf6707a57161f81, 0x44740f17197c3},
B: FpElement{0xa2473705cdb6d4e9, 0xfa3cd67b9c15502c, 0xf0928166d0c5cee1, 0x6150aba0c874faaa, 0x6c0b18d6d92f9034, 0xcff71d340fc1e72e, 0x19a47027af917587, 0x25ed4bad443b8f}}
var affine_xP9 = Fp2Element{
A: FpElement{0x112da30e288217e0, 0x5b336d527320a5f7, 0xbbf4d9403b68e3c6, 0x55eccb31c40b359c, 0x8907129ab69b3203, 0x69cc8c750125a915, 0xa41a38e6f530c0e1, 0xbe68e23af1b8d},
B: FpElement{0x472c603765964213, 0xe4e64995b0769754, 0x4515583c74a6dd24, 0xff7c57f5818363a2, 0xbeaeb24662a92177, 0x8a54fa61fbf24c68, 0xa85542049eb45e12, 0x2b54caf655e285}}
// m = 3904534670189250445536401319770569077681088033069864532895
var mScalarBytes = [...]uint8{0x9f, 0x3b, 0xe7, 0xf9, 0xf4, 0x7c, 0xe6, 0xce, 0x79, 0x3e, 0x3d, 0x9f, 0x9f, 0x3b, 0xe7, 0xf9, 0xf4, 0x7c, 0xe6, 0xce, 0x79, 0x3e, 0x3d, 0x9f}
var affine_xaP = Fp2Element{
A: FpElement{0x100a82c2be58e28b, 0x70ee7b57f40d9103, 0xb9f21d6327411cbb, 0x976b2a65166591cb, 0x35435bd4614ca404, 0x15f862a9c6f51469, 0x14d9ccfe634f374a, 0x31234988b0766c},
B: FpElement{0x323a3a13113b35f8, 0xc949dad174586c8f, 0x1c5ed3b1263143c, 0x13ba9870c9b5bab8, 0x79fb89a31cfe7f19, 0xa8af6d4b5d947ed2, 0xcff00f80d7b67a56, 0xfdfcb136bff75}}
// Inputs for testing 3-point-ladder
var threePointLadderInputs = []ProjectivePoint{
// x(P)
ProjectivePoint{
X: Fp2Element{
A: FpElement{0x43941FA9244C059E, 0xD1F337D076941189, 0x6B6A8B3A8763C96A, 0x6DF569708D6C9482, 0x487EE5707A52F4AA, 0xDE396F6E2559689E, 0xE5EE3895A8991469, 0x2B0946695790A8},
B: FpElement{0xAB552C0FDAED092E, 0x7DF895E43E7DCB1C, 0x35C700E761920C4B, 0xCC5807DD70DC117A, 0x0884039A5A8DB18A, 0xD04620B3D0738052, 0xA200835605138F10, 0x3FF2E59B2FDC6A}},
Z: P503_OneFp2,
},
// x(Q)
ProjectivePoint{
X: Fp2Element{
A: FpElement{0x77015826982BA1FD, 0x44024489673471E4, 0x1CAA2A5F4D5DA63B, 0xA183C07E50738C01, 0x8B97782D4E1A0DE6, 0x9B819522FBC38280, 0x0BDA46A937FB7B8A, 0x3B3614305914DF},
B: FpElement{0xBF0366E97B3168D9, 0xAA522AC3879CEF0F, 0x0AF5EC975BD035C8, 0x1F26FEE7BBAC165C, 0xA0EE6A637724A6AB, 0xFB52101E36BA3A38, 0xD29CF5E376E17376, 0x1374A50DF57071}},
Z: P503_OneFp2,
},
// x(P-Q)
ProjectivePoint{
X: Fp2Element{
A: FpElement{0xD99279BBD41EA559, 0x35CF18E72F578214, 0x90473B1DC77F73E8, 0xBFFEA930B25D7F66, 0xFD558EA177B900B2, 0x7CFAD273A782A23E, 0x6B1F610822E0F611, 0x26D2D2EF9619B5},
B: FpElement{0x534F83651CBCC75D, 0x591FB4757AED5D08, 0x0B04353D40BED542, 0x829A94703AAC9139, 0x0F9C2E6D7663EB5B, 0x5D2D0F90C283F746, 0x34C872AA12A7676E, 0x0ECDB605FBFA16}},
Z: P503_OneFp2,
},
}
var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
// prime p503
var p503BigIntPrime, _ = new(big.Int).SetString("13175843156907117380839252916199345042492186767578363998445663477035843932020761233518914911546024351608607150390087656982982306331019593961154237431807", 10)
/* -------------------------------------------------------------------------
Values used by benchmarking tools
-------------------------------------------------------------------------*/
// Package-level storage for this field element is intended to deter
// compiler optimizations.
var (
benchmarkFpElement FpElement
benchmarkFpElementX2 FpElementX2
bench_x = FpElement{17026702066521327207, 5108203422050077993, 10225396685796065916, 11153620995215874678, 6531160855165088358, 15302925148404145445, 1248821577836769963, 9789766903037985294, 7493111552032041328, 10838999828319306046, 18103257655515297935, 27403304611634}
bench_y = FpElement{4227467157325093378, 10699492810770426363, 13500940151395637365, 12966403950118934952, 16517692605450415877, 13647111148905630666, 14223628886152717087, 7167843152346903316, 15855377759596736571, 4300673881383687338, 6635288001920617779, 30486099554235}
bench_z = FpElementX2{1595347748594595712, 10854920567160033970, 16877102267020034574, 12435724995376660096, 3757940912203224231, 8251999420280413600, 3648859773438820227, 17622716832674727914, 11029567000887241528, 11216190007549447055, 17606662790980286987, 4720707159513626555, 12887743598335030915, 14954645239176589309, 14178817688915225254, 1191346797768989683, 12629157932334713723, 6348851952904485603, 16444232588597434895, 7809979927681678066, 14642637672942531613, 3092657597757640067, 10160361564485285723, 240071237}
)
/* -------------------------------------------------------------------------
Helpers
-------------------------------------------------------------------------*/
// Given xP = x(P), xQ = x(Q), and xPmQ = x(P-Q), compute xR = x(P+Q).
//
// Returns xR to allow chaining. Safe to overlap xP, xQ, xR.
func AddProjFp2(xP, xQ, xPmQ *ProjectivePoint) ProjectivePoint {
// Algorithm 1 of Costello-Smith.
var v0, v1, v2, v3, v4 Fp2Element
var xR ProjectivePoint
kFieldOps.Add(&v0, &xP.X, &xP.Z) // X_P + Z_P
kFieldOps.Sub(&v1, &xQ.X, &xQ.Z)
kFieldOps.Mul(&v1, &v1, &v0) // (X_Q - Z_Q)(X_P + Z_P)
kFieldOps.Sub(&v0, &xP.X, &xP.Z) // X_P - Z_P
kFieldOps.Add(&v2, &xQ.X, &xQ.Z)
kFieldOps.Mul(&v2, &v2, &v0) // (X_Q + Z_Q)(X_P - Z_P)
kFieldOps.Add(&v3, &v1, &v2)
kFieldOps.Square(&v3, &v3) // 4(X_Q X_P - Z_Q Z_P)^2
kFieldOps.Sub(&v4, &v1, &v2)
kFieldOps.Square(&v4, &v4) // 4(X_Q Z_P - Z_Q X_P)^2
kFieldOps.Mul(&v0, &xPmQ.Z, &v3) // 4X_{P-Q}(X_Q X_P - Z_Q Z_P)^2
kFieldOps.Mul(&xR.Z, &xPmQ.X, &v4) // 4Z_{P-Q}(X_Q Z_P - Z_Q X_P)^2
xR.X = v0
return xR
}
// Given xP = x(P) and cached curve parameters Aplus2C = A + 2*C, C4 = 4*C,
// compute xQ = x([2]P).
//
// Returns xQ to allow chaining. Safe to overlap xP, xQ.
func DoubleProjFp2(xP *ProjectivePoint, Aplus2C, C4 *Fp2Element) ProjectivePoint {
// Algorithm 2 of Costello-Smith, amended to work with projective curve coefficients.
var v1, v2, v3, xz4 Fp2Element
var xQ ProjectivePoint
kFieldOps.Add(&v1, &xP.X, &xP.Z) // (X+Z)^2
kFieldOps.Square(&v1, &v1)
kFieldOps.Sub(&v2, &xP.X, &xP.Z) // (X-Z)^2
kFieldOps.Square(&v2, &v2)
kFieldOps.Sub(&xz4, &v1, &v2) // 4XZ = (X+Z)^2 - (X-Z)^2
kFieldOps.Mul(&v2, &v2, C4) // 4C(X-Z)^2
kFieldOps.Mul(&xQ.X, &v1, &v2) // 4C(X+Z)^2(X-Z)^2
kFieldOps.Mul(&v3, &xz4, Aplus2C) // 4XZ(A + 2C)
kFieldOps.Add(&v3, &v3, &v2) // 4XZ(A + 2C) + 4C(X-Z)^2
kFieldOps.Mul(&xQ.Z, &v3, &xz4) // (4XZ(A + 2C) + 4C(X-Z)^2)4XZ
// Now (xQ.x : xQ.z)
// = (4C(X+Z)^2(X-Z)^2 : (4XZ(A + 2C) + 4C(X-Z)^2)4XZ )
// = ((X+Z)^2(X-Z)^2 : (4XZ((A + 2C)/4C) + (X-Z)^2)4XZ )
// = ((X+Z)^2(X-Z)^2 : (4XZ((a + 2)/4) + (X-Z)^2)4XZ )
return xQ
}
// Given x(P) and a scalar m in little-endian bytes, compute x([m]P) using the
// Montgomery ladder. This is described in Algorithm 8 of Costello-Smith.
//
// This function's execution time is dependent only on the byte-length of the
// input scalar. All scalars of the same input length execute in uniform time.
// The scalar can be padded with zero bytes to ensure a uniform length.
//
// Safe to overlap the source with the destination.
func ScalarMult(curve *ProjectiveCurveParameters, xP *ProjectivePoint, scalar []uint8) ProjectivePoint {
var x0, x1, tmp ProjectivePoint
var Aplus2C, C4 Fp2Element
kFieldOps.Add(&Aplus2C, &curve.C, &curve.C) // = 2*C
kFieldOps.Add(&C4, &Aplus2C, &Aplus2C) // = 4*C
kFieldOps.Add(&Aplus2C, &Aplus2C, &curve.A) // = 2*C + A
x0.X = P503_OneFp2
x1 = *xP
// Iterate over the bits of the scalar, top to bottom
prevBit := uint8(0)
for i := len(scalar) - 1; i >= 0; i-- {
scalarByte := scalar[i]
for j := 7; j >= 0; j-- {
bit := (scalarByte >> uint(j)) & 0x1
kCurveOps.Params.Op.CondSwap(&x0.X, &x0.Z, &x1.X, &x1.Z, (bit ^ prevBit))
//sProjectivePointConditionalSwap(&x0, &x1, (bit ^ prevBit))
tmp = DoubleProjFp2(&x0, &Aplus2C, &C4)
x1 = AddProjFp2(&x0, &x1, xP)
x0 = tmp
prevBit = bit
}
}
// now prevBit is the lowest bit of the scalar
kCurveOps.Params.Op.CondSwap(&x0.X, &x0.Z, &x1.X, &x1.Z, prevBit)
return x0
}
// Returns true if lhs = rhs. Takes variable time.
func VartimeEqFp2(lhs, rhs *Fp2Element) bool {
a := *lhs
b := *rhs
fp503StrongReduce(&a.A)
fp503StrongReduce(&a.B)
fp503StrongReduce(&b.A)
fp503StrongReduce(&b.B)
eq := true
for i := 0; i < len(a.A) && eq; i++ {
eq = eq && (a.A[i] == b.A[i])
eq = eq && (a.B[i] == b.B[i])
}
return eq
}
// Returns true if lhs = rhs. Takes variable time.
func VartimeEqProjFp2(lhs, rhs *ProjectivePoint) bool {
var t0, t1 Fp2Element
kFieldOps.Mul(&t0, &lhs.X, &rhs.Z)
kFieldOps.Mul(&t1, &lhs.Z, &rhs.X)
return VartimeEqFp2(&t0, &t1)
}
func (GeneratedTestParams) generateFp2p503(rand *rand.Rand) Fp2Element {
// Generation strategy: low limbs taken from [0,2^64); high limb
// taken from smaller range
//
// Size hint is ignored since all elements are fixed size.
//
// Field elements taken in range [0,2p). Emulate this by capping
// the high limb by the top digit of 2*p-1:
//
// sage: (2*p-1).digits(2^64)[-1]
// 36255204122967100
//
// This still allows generating values >= 2p, but hopefully that
// excess is OK (and if it's not, we'll find out, because it's for
// testing...)
//
highLimb := rand.Uint64() % 36255204122967100
fpElementGen := func() FpElement {
return FpElement{
rand.Uint64(),
rand.Uint64(),
rand.Uint64(),
rand.Uint64(),
rand.Uint64(),
rand.Uint64(),
rand.Uint64(),
highLimb,
}
}
return Fp2Element{A: fpElementGen(), B: fpElementGen()}
}
func (c GeneratedTestParams) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(
GeneratedTestParams{
ProjectivePoint{
X: c.generateFp2p503(rand),
Z: c.generateFp2p503(rand),
},
ProjectiveCurveParameters{
A: c.generateFp2p503(rand),
C: c.generateFp2p503(rand),
},
c.generateFp2p503(rand),
})
}
func (x primeFieldElement) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(primeFieldElement{A: new(GeneratedTestParams).generateFp2p503(rand).A})
}
// Convert an FpElement to a big.Int for testing. Because this is only
// for testing, no big.Int to FpElement conversion is provided.
func radix64ToBigInt(x []uint64) *big.Int {
radix := new(big.Int)
// 2^64
radix.UnmarshalText(([]byte)("18446744073709551616"))
base := new(big.Int).SetUint64(1)
val := new(big.Int).SetUint64(0)
tmp := new(big.Int)
for _, xi := range x {
tmp.SetUint64(xi)
tmp.Mul(tmp, base)
val.Add(val, tmp)
base.Mul(base, radix)
}
return val
}
func toBigInt(x *FpElement) *big.Int {
// Convert from Montgomery form
return toBigIntFromMontgomeryForm(x)
}
func toBigIntFromMontgomeryForm(x *FpElement) *big.Int {
// Convert from Montgomery form
a := FpElement{}
aR := FpElementX2{}
copy(aR[:], x[:]) // = a*R
fp503MontgomeryReduce(&a, &aR) // = a mod p in [0,2p)
fp503StrongReduce(&a) // = a mod p in [0,p)
return radix64ToBigInt(a[:])
}
|