File: curve_test.go

package info (click to toggle)
golang-github-cloudflare-sidh 1.0%2Bgit20190228.d2f0f90-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,128 kB
  • sloc: asm: 5,616; makefile: 63
file content (192 lines) | stat: -rw-r--r-- 9,342 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
package p751

import (
	"bytes"
	. "github.com/cloudflare/sidh/internal/isogeny"
	"testing"
	"testing/quick"
)

func TestOne(t *testing.T) {
	var tmp Fp2Element

	kFieldOps.Mul(&tmp, &P751_OneFp2, &affine_xP)
	if !VartimeEqFp2(&tmp, &affine_xP) {
		t.Error("Not equal 1")
	}
}

// This test is here only to ensure that ScalarMult helper works correctly
func TestScalarMultVersusSage(t *testing.T) {
	var xP ProjectivePoint

	xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
	xP = ScalarMult(&curve, &xP, mScalarBytes[:]) // = x([m]P)
	affine_xQ := xP.ToAffine(kCurveOps)
	if !VartimeEqFp2(&affine_xaP, affine_xQ) {
		t.Error("\nExpected\n", affine_xaP, "\nfound\n", affine_xQ)
	}
}

func Test_jInvariant(t *testing.T) {
	var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
	var jbufRes [P751_SharedSecretSize]byte
	var jbufExp [P751_SharedSecretSize]byte
	// Computed using Sage
	// j = 3674553797500778604587777859668542828244523188705960771798425843588160903687122861541242595678107095655647237100722594066610650373491179241544334443939077738732728884873568393760629500307797547379838602108296735640313894560419*i + 3127495302417548295242630557836520229396092255080675419212556702820583041296798857582303163183558315662015469648040494128968509467224910895884358424271180055990446576645240058960358037224785786494172548090318531038910933793845
	var known_j = Fp2Element{
		A: FpElement{0xc7a8921c1fb23993, 0xa20aea321327620b, 0xf1caa17ed9676fa8, 0x61b780e6b1a04037, 0x47784af4c24acc7a, 0x83926e2e300b9adf, 0xcd891d56fae5b66, 0x49b66985beb733bc, 0xd4bcd2a473d518f, 0xe242239991abe224, 0xa8af5b20f98672f8, 0x139e4d4e4d98},
		B: FpElement{0xb5b52a21f81f359, 0x715e3a865db6d920, 0x9bac2f9d8911978b, 0xef14acd8ac4c1e3d, 0xe81aacd90cfb09c8, 0xaf898288de4a09d9, 0xb85a7fb88c5c4601, 0x2c37c3f1dd303387, 0x7ad3277fe332367c, 0xd4cbee7f25a8e6f8, 0x36eacbe979eaeffa, 0x59eb5a13ac33},
	}
	kCurveOps.Jinvariant(&curve, jbufRes[:])
	kCurveOps.Fp2ToBytes(jbufExp[:], &known_j)

	if !bytes.Equal(jbufRes[:], jbufExp[:]) {
		t.Error("Computed incorrect j-invariant: found\n", jbufRes, "\nexpected\n", jbufExp)
	}
}

func TestProjectivePointVartimeEq(t *testing.T) {
	var xP ProjectivePoint

	xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
	xQ := xP
	// Scale xQ, which results in the same projective point
	kFieldOps.Mul(&xQ.X, &xQ.X, &curve_A)
	kFieldOps.Mul(&xQ.Z, &xQ.Z, &curve_A)
	if !VartimeEqProjFp2(&xP, &xQ) {
		t.Error("Expected the scaled point to be equal to the original")
	}
}

func TestPointDoubleVersusSage(t *testing.T) {
	var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
	var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
	var xP ProjectivePoint

	xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
	kCurveOps.Pow2k(&xP, &params, 1)
	affine_xQ := xP.ToAffine(kCurveOps)
	if !VartimeEqFp2(affine_xQ, &affine_xP2) {
		t.Error("\nExpected\n", affine_xP2, "\nfound\n", affine_xQ)
	}
}

func TestPointMul4VersusSage(t *testing.T) {
	var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
	var xP ProjectivePoint

	xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
	kCurveOps.Pow2k(&xP, &params, 2)
	affine_xQ := xP.ToAffine(kCurveOps)
	if !VartimeEqFp2(affine_xQ, &affine_xP4) {
		t.Error("\nExpected\n", affine_xP4, "\nfound\n", affine_xQ)
	}
}

func TestPointMul9VersusSage(t *testing.T) {
	var params = kCurveOps.CalcCurveParamsEquiv3(&curve)
	var xP ProjectivePoint

	xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
	kCurveOps.Pow3k(&xP, &params, 2)
	affine_xQ := xP.ToAffine(kCurveOps)
	if !VartimeEqFp2(affine_xQ, &affine_xP9) {
		t.Error("\nExpected\n", affine_xP9, "\nfound\n", affine_xQ)
	}
}

func TestPointPow2kVersusScalarMult(t *testing.T) {
	var xP, xQ, xR ProjectivePoint
	var params = kCurveOps.CalcCurveParamsEquiv4(&curve)

	xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
	xQ = xP
	kCurveOps.Pow2k(&xQ, &params, 5)
	xR = ScalarMult(&curve, &xP, []byte{32})
	affine_xQ := xQ.ToAffine(kCurveOps) // = x([32]P)
	affine_xR := xR.ToAffine(kCurveOps) // = x([32]P)

	if !VartimeEqFp2(affine_xQ, affine_xR) {
		t.Error("\nExpected\n", affine_xQ, "\nfound\n", affine_xR)
	}
}

func TestRecoverCoordinateA(t *testing.T) {
	var cparam ProjectiveCurveParameters
	// Vectors generated with SIKE reference implementation
	var a = Fp2Element{
		A: FpElement{0x9331D9C5AAF59EA4, 0xB32B702BE4046931, 0xCEBB333912ED4D34, 0x5628CE37CD29C7A2, 0x0BEAC5ED48B7F58E, 0x1FB9D3E281D65B07, 0x9C0CFACC1E195662, 0xAE4BCE0F6B70F7D9, 0x59E4E63D43FE71A0, 0xEF7CE57560CC8615, 0xE44A8FB7901E74E8, 0x000069D13C8366D1},
		B: FpElement{0xF6DA1070279AB966, 0xA78FB0CE7268C762, 0x19B40F044A57ABFA, 0x7AC8EE6160C0C233, 0x93D4993442947072, 0x757D2B3FA4E44860, 0x073A920F8C4D5257, 0x2031F1B054734037, 0xDEFAA1D2406555CD, 0x26F9C70E1496BE3D, 0x5B3F335A0A4D0976, 0x000013628B2E9C59}}
	var affine_xP = Fp2Element{
		A: FpElement{0xea6b2d1e2aebb250, 0x35d0b205dc4f6386, 0xb198e93cb1830b8d, 0x3b5b456b496ddcc6, 0x5be3f0d41132c260, 0xce5f188807516a00, 0x54f3e7469ea8866d, 0x33809ef47f36286, 0x6fa45f83eabe1edb, 0x1b3391ae5d19fd86, 0x1e66daf48584af3f, 0xb430c14aaa87},
		B: FpElement{0x97b41ebc61dcb2ad, 0x80ead31cb932f641, 0x40a940099948b642, 0x2a22fd16cdc7fe84, 0xaabf35b17579667f, 0x76c1d0139feb4032, 0x71467e1e7b1949be, 0x678ca8dadd0d6d81, 0x14445daea9064c66, 0x92d161eab4fa4691, 0x8dfbb01b6b238d36, 0x2e3718434e4e}}
	var affine_xQ = Fp2Element{
		A: FpElement{0xb055cf0ca1943439, 0xa9ff5de2fa6c69ed, 0x4f2761f934e5730a, 0x61a1dcaa1f94aa4b, 0xce3c8fadfd058543, 0xeac432aaa6701b8e, 0x8491d523093aea8b, 0xba273f9bd92b9b7f, 0xd8f59fd34439bb5a, 0xdc0350261c1fe600, 0x99375ab1eb151311, 0x14d175bbdbc5},
		B: FpElement{0xffb0ef8c2111a107, 0x55ceca3825991829, 0xdbf8a1ccc075d34b, 0xb8e9187bd85d8494, 0x670aa2d5c34a03b0, 0xef9fe2ed2b064953, 0xc911f5311d645aee, 0xf4411f409e410507, 0x934a0a852d03e1a8, 0xe6274e67ae1ad544, 0x9f4bc563c69a87bc, 0x6f316019681e}}
	var affine_xQmP = Fp2Element{
		A: FpElement{0x6ffb44306a153779, 0xc0ffef21f2f918f3, 0x196c46d35d77f778, 0x4a73f80452edcfe6, 0x9b00836bce61c67f, 0x387879418d84219e, 0x20700cf9fc1ec5d1, 0x1dfe2356ec64155e, 0xf8b9e33038256b1c, 0xd2aaf2e14bada0f0, 0xb33b226e79a4e313, 0x6be576fad4e5},
		B: FpElement{0x7db5dbc88e00de34, 0x75cc8cb9f8b6e11e, 0x8c8001c04ebc52ac, 0x67ef6c981a0b5a94, 0xc3654fbe73230738, 0xc6a46ee82983ceca, 0xed1aa61a27ef49f0, 0x17fe5a13b0858fe0, 0x9ae0ca945a4c6b3c, 0x234104a218ad8878, 0xa619627166104394, 0x556a01ff2e7e}}

	cparam.C = P751_OneFp2
	kCurveOps.RecoverCoordinateA(&cparam, &affine_xP, &affine_xQ, &affine_xQmP)

	// Check A is correct
	if !VartimeEqFp2(&cparam.A, &a) {
		t.Error("\nExpected\n", a, "\nfound\n", cparam.A)
	}

	// Check C is not changed
	if !VartimeEqFp2(&cparam.C, &P751_OneFp2) {
		t.Error("\nExpected\n", cparam.C, "\nfound\n", P751_OneFp2)
	}
}

func TestR2LVersusSage(t *testing.T) {
	var xR ProjectivePoint

	sageAffine_xR := Fp2Element{
		A: FpElement{0x729465ba800d4fd5, 0x9398015b59e514a1, 0x1a59dd6be76c748e, 0x1a7db94eb28dd55c, 0x444686e680b1b8ec, 0xcc3d4ace2a2454ff, 0x51d3dab4ec95a419, 0xc3b0f33594acac6a, 0x9598a74e7fd44f8a, 0x4fbf8c638f1c2e37, 0x844e347033052f51, 0x6cd6de3eafcf},
		B: FpElement{0x85da145412d73430, 0xd83c0e3b66eb3232, 0xd08ff2d453ec1369, 0xa64aaacfdb395b13, 0xe9cba211a20e806e, 0xa4f80b175d937cfc, 0x556ce5c64b1f7937, 0xb59b39ea2b3fdf7a, 0xc2526b869a4196b3, 0x8dad90bca9371750, 0xdfb4a30c9d9147a2, 0x346d2130629b}}
	xR = kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(mScalarBytes)*8), mScalarBytes[:])
	affine_xR := xR.ToAffine(kCurveOps)

	if !VartimeEqFp2(affine_xR, &sageAffine_xR) {
		t.Error("\nExpected\n", sageAffine_xR, "\nfound\n", affine_xR)
	}
}

func TestPointTripleVersusAddDouble(t *testing.T) {
	tripleEqualsAddDouble := func(params GeneratedTestParams) bool {
		var P2, P3, P2plusP ProjectivePoint

		eqivParams4 := kCurveOps.CalcCurveParamsEquiv4(&params.Cparam)
		eqivParams3 := kCurveOps.CalcCurveParamsEquiv3(&params.Cparam)
		P2 = params.Point
		P3 = params.Point
		kCurveOps.Pow2k(&P2, &eqivParams4, 1)                   // = x([2]P)
		kCurveOps.Pow3k(&P3, &eqivParams3, 1)                   // = x([3]P)
		P2plusP = AddProjFp2(&P2, &params.Point, &params.Point) // = x([2]P + P)
		return VartimeEqProjFp2(&P3, &P2plusP)
	}

	if err := quick.Check(tripleEqualsAddDouble, quickCheckConfig); err != nil {
		t.Error(err)
	}
}

func BenchmarkThreePointLadder379BitScalar(b *testing.B) {
	var mScalarBytes = [...]uint8{84, 222, 146, 63, 85, 18, 173, 162, 167, 38, 10, 8, 143, 176, 93, 228, 247, 128, 50, 128, 205, 42, 15, 137, 119, 67, 43, 3, 61, 91, 237, 24, 235, 12, 53, 96, 186, 164, 232, 223, 197, 224, 64, 109, 137, 63, 246, 4}

	for n := 0; n < b.N; n++ {
		kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(mScalarBytes)*8), mScalarBytes[:])
	}
}

func BenchmarkR2L379BitScalar(b *testing.B) {
	var mScalarBytes = [...]uint8{84, 222, 146, 63, 85, 18, 173, 162, 167, 38, 10, 8, 143, 176, 93, 228, 247, 128, 50, 128, 205, 42, 15, 137, 119, 67, 43, 3, 61, 91, 237, 24, 235, 12, 53, 96, 186, 164, 232, 223, 197, 224, 64, 109, 137, 63, 246, 4}

	for n := 0; n < b.N; n++ {
		kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(mScalarBytes)*8), mScalarBytes[:])
	}
}