1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
package p751
import (
"bytes"
. "github.com/cloudflare/sidh/internal/isogeny"
"testing"
"testing/quick"
)
func TestOne(t *testing.T) {
var tmp Fp2Element
kFieldOps.Mul(&tmp, &P751_OneFp2, &affine_xP)
if !VartimeEqFp2(&tmp, &affine_xP) {
t.Error("Not equal 1")
}
}
// This test is here only to ensure that ScalarMult helper works correctly
func TestScalarMultVersusSage(t *testing.T) {
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
xP = ScalarMult(&curve, &xP, mScalarBytes[:]) // = x([m]P)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(&affine_xaP, affine_xQ) {
t.Error("\nExpected\n", affine_xaP, "\nfound\n", affine_xQ)
}
}
func Test_jInvariant(t *testing.T) {
var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
var jbufRes [P751_SharedSecretSize]byte
var jbufExp [P751_SharedSecretSize]byte
// Computed using Sage
// j = 3674553797500778604587777859668542828244523188705960771798425843588160903687122861541242595678107095655647237100722594066610650373491179241544334443939077738732728884873568393760629500307797547379838602108296735640313894560419*i + 3127495302417548295242630557836520229396092255080675419212556702820583041296798857582303163183558315662015469648040494128968509467224910895884358424271180055990446576645240058960358037224785786494172548090318531038910933793845
var known_j = Fp2Element{
A: FpElement{0xc7a8921c1fb23993, 0xa20aea321327620b, 0xf1caa17ed9676fa8, 0x61b780e6b1a04037, 0x47784af4c24acc7a, 0x83926e2e300b9adf, 0xcd891d56fae5b66, 0x49b66985beb733bc, 0xd4bcd2a473d518f, 0xe242239991abe224, 0xa8af5b20f98672f8, 0x139e4d4e4d98},
B: FpElement{0xb5b52a21f81f359, 0x715e3a865db6d920, 0x9bac2f9d8911978b, 0xef14acd8ac4c1e3d, 0xe81aacd90cfb09c8, 0xaf898288de4a09d9, 0xb85a7fb88c5c4601, 0x2c37c3f1dd303387, 0x7ad3277fe332367c, 0xd4cbee7f25a8e6f8, 0x36eacbe979eaeffa, 0x59eb5a13ac33},
}
kCurveOps.Jinvariant(&curve, jbufRes[:])
kCurveOps.Fp2ToBytes(jbufExp[:], &known_j)
if !bytes.Equal(jbufRes[:], jbufExp[:]) {
t.Error("Computed incorrect j-invariant: found\n", jbufRes, "\nexpected\n", jbufExp)
}
}
func TestProjectivePointVartimeEq(t *testing.T) {
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
xQ := xP
// Scale xQ, which results in the same projective point
kFieldOps.Mul(&xQ.X, &xQ.X, &curve_A)
kFieldOps.Mul(&xQ.Z, &xQ.Z, &curve_A)
if !VartimeEqProjFp2(&xP, &xQ) {
t.Error("Expected the scaled point to be equal to the original")
}
}
func TestPointDoubleVersusSage(t *testing.T) {
var curve = ProjectiveCurveParameters{A: curve_A, C: curve_C}
var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
kCurveOps.Pow2k(&xP, ¶ms, 1)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xQ, &affine_xP2) {
t.Error("\nExpected\n", affine_xP2, "\nfound\n", affine_xQ)
}
}
func TestPointMul4VersusSage(t *testing.T) {
var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
kCurveOps.Pow2k(&xP, ¶ms, 2)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xQ, &affine_xP4) {
t.Error("\nExpected\n", affine_xP4, "\nfound\n", affine_xQ)
}
}
func TestPointMul9VersusSage(t *testing.T) {
var params = kCurveOps.CalcCurveParamsEquiv3(&curve)
var xP ProjectivePoint
xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
kCurveOps.Pow3k(&xP, ¶ms, 2)
affine_xQ := xP.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xQ, &affine_xP9) {
t.Error("\nExpected\n", affine_xP9, "\nfound\n", affine_xQ)
}
}
func TestPointPow2kVersusScalarMult(t *testing.T) {
var xP, xQ, xR ProjectivePoint
var params = kCurveOps.CalcCurveParamsEquiv4(&curve)
xP = ProjectivePoint{X: affine_xP, Z: P751_OneFp2}
xQ = xP
kCurveOps.Pow2k(&xQ, ¶ms, 5)
xR = ScalarMult(&curve, &xP, []byte{32})
affine_xQ := xQ.ToAffine(kCurveOps) // = x([32]P)
affine_xR := xR.ToAffine(kCurveOps) // = x([32]P)
if !VartimeEqFp2(affine_xQ, affine_xR) {
t.Error("\nExpected\n", affine_xQ, "\nfound\n", affine_xR)
}
}
func TestRecoverCoordinateA(t *testing.T) {
var cparam ProjectiveCurveParameters
// Vectors generated with SIKE reference implementation
var a = Fp2Element{
A: FpElement{0x9331D9C5AAF59EA4, 0xB32B702BE4046931, 0xCEBB333912ED4D34, 0x5628CE37CD29C7A2, 0x0BEAC5ED48B7F58E, 0x1FB9D3E281D65B07, 0x9C0CFACC1E195662, 0xAE4BCE0F6B70F7D9, 0x59E4E63D43FE71A0, 0xEF7CE57560CC8615, 0xE44A8FB7901E74E8, 0x000069D13C8366D1},
B: FpElement{0xF6DA1070279AB966, 0xA78FB0CE7268C762, 0x19B40F044A57ABFA, 0x7AC8EE6160C0C233, 0x93D4993442947072, 0x757D2B3FA4E44860, 0x073A920F8C4D5257, 0x2031F1B054734037, 0xDEFAA1D2406555CD, 0x26F9C70E1496BE3D, 0x5B3F335A0A4D0976, 0x000013628B2E9C59}}
var affine_xP = Fp2Element{
A: FpElement{0xea6b2d1e2aebb250, 0x35d0b205dc4f6386, 0xb198e93cb1830b8d, 0x3b5b456b496ddcc6, 0x5be3f0d41132c260, 0xce5f188807516a00, 0x54f3e7469ea8866d, 0x33809ef47f36286, 0x6fa45f83eabe1edb, 0x1b3391ae5d19fd86, 0x1e66daf48584af3f, 0xb430c14aaa87},
B: FpElement{0x97b41ebc61dcb2ad, 0x80ead31cb932f641, 0x40a940099948b642, 0x2a22fd16cdc7fe84, 0xaabf35b17579667f, 0x76c1d0139feb4032, 0x71467e1e7b1949be, 0x678ca8dadd0d6d81, 0x14445daea9064c66, 0x92d161eab4fa4691, 0x8dfbb01b6b238d36, 0x2e3718434e4e}}
var affine_xQ = Fp2Element{
A: FpElement{0xb055cf0ca1943439, 0xa9ff5de2fa6c69ed, 0x4f2761f934e5730a, 0x61a1dcaa1f94aa4b, 0xce3c8fadfd058543, 0xeac432aaa6701b8e, 0x8491d523093aea8b, 0xba273f9bd92b9b7f, 0xd8f59fd34439bb5a, 0xdc0350261c1fe600, 0x99375ab1eb151311, 0x14d175bbdbc5},
B: FpElement{0xffb0ef8c2111a107, 0x55ceca3825991829, 0xdbf8a1ccc075d34b, 0xb8e9187bd85d8494, 0x670aa2d5c34a03b0, 0xef9fe2ed2b064953, 0xc911f5311d645aee, 0xf4411f409e410507, 0x934a0a852d03e1a8, 0xe6274e67ae1ad544, 0x9f4bc563c69a87bc, 0x6f316019681e}}
var affine_xQmP = Fp2Element{
A: FpElement{0x6ffb44306a153779, 0xc0ffef21f2f918f3, 0x196c46d35d77f778, 0x4a73f80452edcfe6, 0x9b00836bce61c67f, 0x387879418d84219e, 0x20700cf9fc1ec5d1, 0x1dfe2356ec64155e, 0xf8b9e33038256b1c, 0xd2aaf2e14bada0f0, 0xb33b226e79a4e313, 0x6be576fad4e5},
B: FpElement{0x7db5dbc88e00de34, 0x75cc8cb9f8b6e11e, 0x8c8001c04ebc52ac, 0x67ef6c981a0b5a94, 0xc3654fbe73230738, 0xc6a46ee82983ceca, 0xed1aa61a27ef49f0, 0x17fe5a13b0858fe0, 0x9ae0ca945a4c6b3c, 0x234104a218ad8878, 0xa619627166104394, 0x556a01ff2e7e}}
cparam.C = P751_OneFp2
kCurveOps.RecoverCoordinateA(&cparam, &affine_xP, &affine_xQ, &affine_xQmP)
// Check A is correct
if !VartimeEqFp2(&cparam.A, &a) {
t.Error("\nExpected\n", a, "\nfound\n", cparam.A)
}
// Check C is not changed
if !VartimeEqFp2(&cparam.C, &P751_OneFp2) {
t.Error("\nExpected\n", cparam.C, "\nfound\n", P751_OneFp2)
}
}
func TestR2LVersusSage(t *testing.T) {
var xR ProjectivePoint
sageAffine_xR := Fp2Element{
A: FpElement{0x729465ba800d4fd5, 0x9398015b59e514a1, 0x1a59dd6be76c748e, 0x1a7db94eb28dd55c, 0x444686e680b1b8ec, 0xcc3d4ace2a2454ff, 0x51d3dab4ec95a419, 0xc3b0f33594acac6a, 0x9598a74e7fd44f8a, 0x4fbf8c638f1c2e37, 0x844e347033052f51, 0x6cd6de3eafcf},
B: FpElement{0x85da145412d73430, 0xd83c0e3b66eb3232, 0xd08ff2d453ec1369, 0xa64aaacfdb395b13, 0xe9cba211a20e806e, 0xa4f80b175d937cfc, 0x556ce5c64b1f7937, 0xb59b39ea2b3fdf7a, 0xc2526b869a4196b3, 0x8dad90bca9371750, 0xdfb4a30c9d9147a2, 0x346d2130629b}}
xR = kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(mScalarBytes)*8), mScalarBytes[:])
affine_xR := xR.ToAffine(kCurveOps)
if !VartimeEqFp2(affine_xR, &sageAffine_xR) {
t.Error("\nExpected\n", sageAffine_xR, "\nfound\n", affine_xR)
}
}
func TestPointTripleVersusAddDouble(t *testing.T) {
tripleEqualsAddDouble := func(params GeneratedTestParams) bool {
var P2, P3, P2plusP ProjectivePoint
eqivParams4 := kCurveOps.CalcCurveParamsEquiv4(¶ms.Cparam)
eqivParams3 := kCurveOps.CalcCurveParamsEquiv3(¶ms.Cparam)
P2 = params.Point
P3 = params.Point
kCurveOps.Pow2k(&P2, &eqivParams4, 1) // = x([2]P)
kCurveOps.Pow3k(&P3, &eqivParams3, 1) // = x([3]P)
P2plusP = AddProjFp2(&P2, ¶ms.Point, ¶ms.Point) // = x([2]P + P)
return VartimeEqProjFp2(&P3, &P2plusP)
}
if err := quick.Check(tripleEqualsAddDouble, quickCheckConfig); err != nil {
t.Error(err)
}
}
func BenchmarkThreePointLadder379BitScalar(b *testing.B) {
var mScalarBytes = [...]uint8{84, 222, 146, 63, 85, 18, 173, 162, 167, 38, 10, 8, 143, 176, 93, 228, 247, 128, 50, 128, 205, 42, 15, 137, 119, 67, 43, 3, 61, 91, 237, 24, 235, 12, 53, 96, 186, 164, 232, 223, 197, 224, 64, 109, 137, 63, 246, 4}
for n := 0; n < b.N; n++ {
kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(mScalarBytes)*8), mScalarBytes[:])
}
}
func BenchmarkR2L379BitScalar(b *testing.B) {
var mScalarBytes = [...]uint8{84, 222, 146, 63, 85, 18, 173, 162, 167, 38, 10, 8, 143, 176, 93, 228, 247, 128, 50, 128, 205, 42, 15, 137, 119, 67, 43, 3, 61, 91, 237, 24, 235, 12, 53, 96, 186, 164, 232, 223, 197, 224, 64, 109, 137, 63, 246, 4}
for n := 0; n < b.N; n++ {
kCurveOps.ScalarMul3Pt(&curve, &threePointLadderInputs[0], &threePointLadderInputs[1], &threePointLadderInputs[2], uint(len(mScalarBytes)*8), mScalarBytes[:])
}
}
|