1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
// [SIKE] http://www.sike.org/files/SIDH-spec.pdf
// [REF] https://github.com/Microsoft/PQCrypto-SIDH
package sike
import (
"crypto/subtle"
"errors"
"io"
// TODO: Use implementation from xcrypto, once PR below merged
// https://go-review.googlesource.com/c/crypto/+/111281/
. "github.com/cloudflare/sidh/sidh"
cshake "github.com/henrydcase/nobs/hash/sha3"
)
// Constants used for cSHAKE customization
// Those values are different than in [SIKE] - they are encoded on 16bits. This is
// done in order for implementation to be compatible with [REF] and test vectors.
var G = []byte{0x00, 0x00}
var H = []byte{0x01, 0x00}
var F = []byte{0x02, 0x00}
// Generates cShake-256 sum
func cshakeSum(out, in, S []byte) {
h := cshake.NewCShake256(nil, S)
h.Write(in)
h.Read(out)
}
func encrypt(skA *PrivateKey, pkA, pkB *PublicKey, ptext []byte) ([]byte, error) {
var n [40]byte // n can is max 320-bit (see 1.4 of [SIKE])
var ptextLen = len(ptext)
if pkB.Variant() != KeyVariant_SIKE {
return nil, errors.New("wrong key type")
}
j, err := DeriveSecret(skA, pkB)
if err != nil {
return nil, err
}
cshakeSum(n[:ptextLen], j, F)
for i, _ := range ptext {
n[i] ^= ptext[i]
}
ret := make([]byte, pkA.Size()+ptextLen)
copy(ret, pkA.Export())
copy(ret[pkA.Size():], n[:ptextLen])
return ret, nil
}
// -----------------------------------------------------------------------------
// PKE interface
//
// Uses SIKE public key to encrypt plaintext. Requires cryptographically secure PRNG
// Returns ciphertext in case encryption succeeds. Returns error in case PRNG fails
// or wrongly formated input was provided.
func Encrypt(rng io.Reader, pub *PublicKey, ptext []byte) ([]byte, error) {
var params = pub.Params()
var ptextLen = len(ptext)
// c1 must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
if ptextLen != (params.KemSize + 8) {
return nil, errors.New("Unsupported message length")
}
skA := NewPrivateKey(params.Id, KeyVariant_SIDH_A)
err := skA.Generate(rng)
if err != nil {
return nil, err
}
pkA := skA.GeneratePublicKey()
return encrypt(skA, pkA, pub, ptext)
}
// Uses SIKE private key to decrypt ciphertext. Returns plaintext in case
// decryption succeeds or error in case unexptected input was provided.
// Constant time
func Decrypt(prv *PrivateKey, ctext []byte) ([]byte, error) {
var params = prv.Params()
var n [40]byte // n can is max 320-bit (see 1.4 of [SIKE])
var c1_len int
var pk_len = params.PublicKeySize
if prv.Variant() != KeyVariant_SIKE {
return nil, errors.New("wrong key type")
}
// ctext is a concatenation of (pubkey_A || c1=ciphertext)
// it must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
c1_len = len(ctext) - pk_len
if c1_len != (int(params.KemSize) + 8) {
return nil, errors.New("wrong size of cipher text")
}
c0 := NewPublicKey(params.Id, KeyVariant_SIDH_A)
err := c0.Import(ctext[:pk_len])
if err != nil {
return nil, err
}
j, err := DeriveSecret(prv, c0)
if err != nil {
return nil, err
}
cshakeSum(n[:c1_len], j, F)
for i, _ := range n[:c1_len] {
n[i] ^= ctext[pk_len+i]
}
return n[:c1_len], nil
}
// -----------------------------------------------------------------------------
// KEM interface
//
// Encapsulation receives the public key and generates SIKE ciphertext and shared secret.
// The generated ciphertext is used for authentication.
// The rng must be cryptographically secure PRNG.
// Error is returned in case PRNG fails or wrongly formated input was provided.
func Encapsulate(rng io.Reader, pub *PublicKey) (ctext []byte, secret []byte, err error) {
var params = pub.Params()
// Buffer for random, secret message
var ptext = make([]byte, params.MsgLen)
// r = G(ptext||pub)
var r = make([]byte, params.A.SecretByteLen)
// Resulting shared secret
secret = make([]byte, params.KemSize)
// Generate ephemeral value
_, err = io.ReadFull(rng, ptext)
if err != nil {
return nil, nil, err
}
h := cshake.NewCShake256(nil, G)
h.Write(ptext)
h.Write(pub.Export())
h.Read(r)
// cSHAKE256 implementation is byte oriented. Ensure bitlength is not bigger then to 2^e2-1
r[len(r)-1] &= (1 << (params.A.SecretBitLen % 8)) - 1
// (c0 || c1) = Enc(pkA, ptext; r)
skA := NewPrivateKey(params.Id, KeyVariant_SIDH_A)
err = skA.Import(r)
if err != nil {
return nil, nil, err
}
pkA := skA.GeneratePublicKey()
ctext, err = encrypt(skA, pkA, pub, ptext)
if err != nil {
return nil, nil, err
}
// K = H(ptext||(c0||c1))
h = cshake.NewCShake256(nil, H)
h.Write(ptext)
h.Write(ctext)
h.Read(secret)
return ctext, secret, nil
}
// Decapsulate given the keypair and ciphertext as inputs, Decapsulate outputs a shared
// secret if plaintext verifies correctly, otherwise function outputs random value.
// Decapsulation may fail in case input is wrongly formated.
// Constant time for properly initialized input.
func Decapsulate(prv *PrivateKey, pub *PublicKey, ctext []byte) ([]byte, error) {
var params = pub.Params()
var r = make([]byte, params.A.SecretByteLen)
// Resulting shared secret
var secret = make([]byte, params.KemSize)
var skA = NewPrivateKey(params.Id, KeyVariant_SIDH_A)
m, err := Decrypt(prv, ctext)
if err != nil {
return nil, err
}
// r' = G(m'||pub)
h := cshake.NewCShake256(nil, G)
h.Write(m)
h.Write(pub.Export())
h.Read(r)
// cSHAKE256 implementation is byte oriented: Ensure bitlength is not bigger than 2^e2-1
r[len(r)-1] &= (1 << (params.A.SecretBitLen % 8)) - 1
// Never fails
skA.Import(r)
// Never fails
pkA := skA.GeneratePublicKey()
c0 := pkA.Export()
h = cshake.NewCShake256(nil, H)
if subtle.ConstantTimeCompare(c0, ctext[:len(c0)]) == 1 {
h.Write(m)
} else {
// S is chosen at random when generating a key and unknown to other party. It
// may seem weird, but it's correct. It is important that S is unpredictable
// to other party. Without this check, it is possible to recover a secret, by
// providing series of invalid ciphertexts. It is also important that in case
//
// See more details in "On the security of supersingular isogeny cryptosystems"
// (S. Galbraith, et al., 2016, ePrint #859).
h.Write(prv.S)
}
h.Write(ctext)
h.Read(secret)
return secret, nil
}
|