1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
|
// Copyright 2022 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package apd
import (
"fmt"
"math/big"
"math/bits"
"math/rand"
"strconv"
"unsafe"
)
// The inlineWords capacity is set to accommodate any value that would fit in a
// 128-bit integer (i.e. values with an absolute value up to 2^128 - 1).
const inlineWords = 128 / bits.UintSize
// BigInt is a wrapper around big.Int. It minimizes memory allocation by using
// an inline array to back the big.Int's variable-length "nat" slice when the
// integer's value is sufficiently small.
// The zero value is ready to use.
type BigInt struct {
// A wrapped big.Int. Only set to the BigInt's value when the value exceeds
// what is representable in the _inline array.
//
// When the BigInt's value is still small enough to use the _inline array,
// this field doubles as integer's negative flag. See negSentinel.
//
// Methods should access this field through inner.
_inner *big.Int
// The inlined backing array use for short-lived, stack-allocated big.Int
// structs during arithmetic when the value is small.
//
// Each BigInt maintains (through big.Int) an internal reference to a
// variable-length integer value, which is represented by a []big.Word. The
// _inline field and the inner and updateInner methods combine to allow
// BigInt to inline this variable-length integer array within the BigInt
// struct when its value is sufficiently small. In the inner method, we
// point a temporary big.Int's nat slice at this _inline array. big.Int will
// avoid re-allocating this array until it is provided with a value that
// exceeds the initial capacity. Later in updateInner, we detect whether the
// array has been re-allocated. If so, we switch to using the _inner. If
// not, we continue to use this array.
_inline [inlineWords]big.Word
}
// NewBigInt allocates and returns a new BigInt set to x.
//
// NOTE: BigInt jumps through hoops to avoid escaping to the heap. As such, most
// users of BigInt should not need this function. They should instead declare a
// zero-valued BigInt directly on the stack and interact with references to this
// stack-allocated value. Recall that the zero-valued BigInt is ready to use.
func NewBigInt(x int64) *BigInt {
return new(BigInt).SetInt64(x)
}
// Set as the value of BigInt._inner as a "sentinel" flag to indicate that a
// BigInt is negative ((big.Int).Sign() < 0) but the absolute value is still
// small enough to represent in the _inline array.
var negSentinel = new(big.Int)
// isInline returns whether the BigInt stores its value in its _inline array.
//gcassert:inline
func (z *BigInt) isInline() bool {
return z._inner == nil || z._inner == negSentinel
}
// The memory representation of big.Int. Used for unsafe modification below.
type intStruct struct {
neg bool
abs []big.Word
}
// noescape hides a pointer from escape analysis. noescape is the identity
// function but escape analysis doesn't think the output depends on the input.
// noescape is inlined and currently compiles down to zero instructions.
//
// USE CAREFULLY!
//
// This was copied from strings.Builder, which has identical code which was
// itself copied from the runtime.
// For more, see issues #23382 and #7921 in github.com/golang/go.
//go:nosplit
//go:nocheckptr
func noescape(p unsafe.Pointer) unsafe.Pointer {
x := uintptr(p)
//lint:ignore SA4016 intentional no-op to hide pointer from escape analysis.
return unsafe.Pointer(x ^ 0)
}
// inner returns the BigInt's current value as a *big.Int.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
//gcassert:inline
func (z *BigInt) inner(tmp *big.Int) *big.Int {
// Point the big.Int at the inline array. When doing so, use noescape to
// avoid forcing the BigInt to escape to the heap. Go's escape analysis
// struggles with self-referential pointers, and it can't prove that we
// only assign _inner to a heap-allocated object (which must not contain
// pointers that reference the stack or the GC explodes) if the big.Int's
// backing array has been re-allocated onto the heap first.
//
// NOTE: SetBits sets the neg field to false, so this must come before the
// negSentinel handling.
tmp.SetBits((*[inlineWords]big.Word)(noescape(unsafe.Pointer(&z._inline[0])))[:])
if z._inner != nil {
if z._inner != negSentinel {
// The variable-length big.Int reference is set.
return z._inner
}
// This is the negative sentinel, which indicates that the integer is
// negative but still stored inline. Update the big.Int accordingly. We
// use unsafe because (*big.Int).Neg is too complex and prevents this
// method from being inlined.
(*intStruct)(unsafe.Pointer(tmp)).neg = true
}
return tmp
}
// innerOrNil is like inner, but returns a nil *big.Int if the receiver is nil.
// NOTE: this is not inlined.
func (z *BigInt) innerOrNil(tmp *big.Int) *big.Int {
if z == nil {
return nil
}
return z.inner(tmp)
}
// innerOrAlias is like inner, but returns the provided *big.Int if the receiver
// and the other *BigInt argument reference the same object.
// NOTE: this is not inlined.
func (z *BigInt) innerOrAlias(tmp *big.Int, a *BigInt, ai *big.Int) *big.Int {
if a == z {
return ai
}
return z.inner(tmp)
}
// innerOrNilOrAlias is like inner, but with the added semantics specified for
// both innerOrNil and innerOrAlias.
// NOTE: this is not inlined.
func (z *BigInt) innerOrNilOrAlias(tmp *big.Int, a *BigInt, ai *big.Int) *big.Int {
if z == nil {
return nil
} else if z == a {
return ai
}
return z.inner(tmp)
}
// updateInner updates the BigInt's current value with the provided *big.Int.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
//gcassert:inline
func (z *BigInt) updateInner(src *big.Int) {
if z._inner == src {
return
}
bits := src.Bits()
bitsLen := len(bits)
if bitsLen > 0 && &z._inline[0] != &bits[0] {
// The big.Int re-allocated its backing array during arithmetic because
// the value grew beyond what could fit in the _inline array. Switch to
// a heap-allocated, variable-length big.Int and store that in _inner.
// From now on, all arithmetic will use this big.Int directly.
//
// Allocate a new big.Int and perform a shallow-copy of the argument to
// prevent it from escaping off the stack.
z._inner = new(big.Int)
*z._inner = *src
} else {
// Zero out all words beyond the end of the big.Int's current Word
// slice. big.Int arithmetic can sometimes leave these words "dirty".
// They would cause issues when the _inline array is injected into the
// next big.Int if not cleared.
for bitsLen < len(z._inline) {
z._inline[bitsLen] = 0
bitsLen++
}
// Set or unset the negative sentinel, according to the argument's sign.
// We use unsafe because (*big.Int).Sign is too complex and prevents
// this method from being inlined.
if (*intStruct)(unsafe.Pointer(src)).neg {
z._inner = negSentinel
} else {
z._inner = nil
}
}
}
const wordsInUint64 = 64 / bits.UintSize
func init() {
if inlineWords < wordsInUint64 {
panic("inline array must be at least 64 bits large")
}
}
// innerAsUint64 returns the BigInt's current absolute value as a uint64 and a
// flag indicating whether the value is negative. If the value is not stored
// inline or if it can not fit in a uint64, false is returned.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
//gcassert:inline
func (z *BigInt) innerAsUint64() (val uint64, neg bool, ok bool) {
if !z.isInline() {
// The value is not stored inline.
return 0, false, false
}
if wordsInUint64 == 1 && inlineWords == 2 {
// Manually unrolled loop for current inlineWords setting.
if z._inline[1] != 0 {
// The value can not fit in a uint64.
return 0, false, false
}
} else {
// Fallback for other values of inlineWords.
for i := wordsInUint64; i < len(z._inline); i++ {
if z._inline[i] != 0 {
// The value can not fit in a uint64.
return 0, false, false
}
}
}
val = uint64(z._inline[0])
if wordsInUint64 == 2 {
// From big.low64.
val = uint64(z._inline[1])<<32 | val
}
neg = z._inner == negSentinel
return val, neg, true
}
// updateInnerFromUint64 updates the BigInt's current value with the provided
// absolute value and sign.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
//gcassert:inline
func (z *BigInt) updateInnerFromUint64(val uint64, neg bool) {
// Set the inline value.
z._inline[0] = big.Word(val)
if wordsInUint64 == 2 {
// From (big.nat).setUint64.
z._inline[1] = big.Word(val >> 32)
}
// Clear out all other words in the inline array.
if wordsInUint64 == 1 && inlineWords == 2 {
// Manually unrolled loop for current inlineWords setting.
z._inline[1] = 0
} else {
// Fallback for other values of inlineWords.
for i := wordsInUint64; i < len(z._inline); i++ {
z._inline[i] = 0
}
}
// Set or unset the negative sentinel.
if neg {
z._inner = negSentinel
} else {
z._inner = nil
}
}
const (
bigIntSize = unsafe.Sizeof(BigInt{})
mathBigIntSize = unsafe.Sizeof(big.Int{})
mathWordSize = unsafe.Sizeof(big.Word(0))
)
// Size returns the total memory footprint of z in bytes.
func (z *BigInt) Size() uintptr {
if z.isInline() {
return bigIntSize
}
return bigIntSize + mathBigIntSize + uintptr(cap(z._inner.Bits()))*mathWordSize
}
///////////////////////////////////////////////////////////////////////////////
// inline arithmetic for small values //
///////////////////////////////////////////////////////////////////////////////
//gcassert:inline
func addInline(xVal, yVal uint64, xNeg, yNeg bool) (zVal uint64, zNeg, ok bool) {
if xNeg == yNeg {
sum, carry := bits.Add64(xVal, yVal, 0)
overflow := carry != 0
return sum, xNeg, !overflow
}
diff, borrow := bits.Sub64(xVal, yVal, 0)
if borrow != 0 { // underflow
xNeg = !xNeg
diff = yVal - xVal
}
if diff == 0 {
xNeg = false
}
return diff, xNeg, true
}
//gcassert:inline
func mulInline(xVal, yVal uint64, xNeg, yNeg bool) (zVal uint64, zNeg, ok bool) {
hi, lo := bits.Mul64(xVal, yVal)
neg := xNeg != yNeg
overflow := hi != 0
return lo, neg, !overflow
}
//gcassert:inline
func quoInline(xVal, yVal uint64, xNeg, yNeg bool) (quoVal uint64, quoNeg, ok bool) {
if yVal == 0 { // divide by 0
return 0, false, false
}
quo := xVal / yVal
neg := xNeg != yNeg
return quo, neg, true
}
//gcassert:inline
func remInline(xVal, yVal uint64, xNeg, yNeg bool) (remVal uint64, remNeg, ok bool) {
if yVal == 0 { // divide by 0
return 0, false, false
}
rem := xVal % yVal
return rem, xNeg, true
}
///////////////////////////////////////////////////////////////////////////////
// big.Int API wrapper methods //
///////////////////////////////////////////////////////////////////////////////
// Abs calls (big.Int).Abs.
func (z *BigInt) Abs(x *BigInt) *BigInt {
if x.isInline() {
z._inline = x._inline
z._inner = nil // !negSentinel
return z
}
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Abs(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// Add calls (big.Int).Add.
func (z *BigInt) Add(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
if zVal, zNeg, ok := addInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint64(zVal, zNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Add(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// And calls (big.Int).And.
func (z *BigInt) And(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.And(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// AndNot calls (big.Int).AndNot.
func (z *BigInt) AndNot(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.AndNot(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// Append calls (big.Int).Append.
func (z *BigInt) Append(buf []byte, base int) []byte {
if z == nil {
// Fast-path that avoids innerOrNil, allowing inner to be inlined.
return append(buf, "<nil>"...)
}
if zVal, zNeg, ok := z.innerAsUint64(); ok {
// Check if the base is supported by strconv.AppendUint.
if base >= 2 && base <= 36 {
if zNeg {
buf = append(buf, '-')
}
return strconv.AppendUint(buf, zVal, base)
}
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Append(buf, base)
}
// Binomial calls (big.Int).Binomial.
func (z *BigInt) Binomial(n, k int64) *BigInt {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Binomial(n, k)
z.updateInner(zi)
return z
}
// Bit calls (big.Int).Bit.
func (z *BigInt) Bit(i int) uint {
if i == 0 && z.isInline() {
// Optimization for common case: odd/even test of z.
return uint(z._inline[0] & 1)
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Bit(i)
}
// BitLen calls (big.Int).BitLen.
func (z *BigInt) BitLen() int {
if z.isInline() {
// Find largest non-zero inline word.
for i := len(z._inline) - 1; i >= 0; i-- {
if z._inline[i] != 0 {
return i*bits.UintSize + bits.Len(uint(z._inline[i]))
}
}
return 0
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).BitLen()
}
// Bits calls (big.Int).Bits.
func (z *BigInt) Bits() []big.Word {
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Bits()
}
// Bytes calls (big.Int).Bytes.
func (z *BigInt) Bytes() []byte {
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Bytes()
}
// Cmp calls (big.Int).Cmp.
func (z *BigInt) Cmp(y *BigInt) (r int) {
if zVal, zNeg, ok := z.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
switch {
case zNeg == yNeg:
switch {
case zVal < yVal:
r = -1
case zVal > yVal:
r = 1
}
if zNeg {
r = -r
}
case zNeg:
r = -1
default:
r = 1
}
return r
}
}
var tmp1, tmp2 big.Int //gcassert:noescape
return z.inner(&tmp1).Cmp(y.inner(&tmp2))
}
// CmpAbs calls (big.Int).CmpAbs.
func (z *BigInt) CmpAbs(y *BigInt) (r int) {
if zVal, _, ok := z.innerAsUint64(); ok {
if yVal, _, ok := y.innerAsUint64(); ok {
switch {
case zVal < yVal:
r = -1
case zVal > yVal:
r = 1
}
return r
}
}
var tmp1, tmp2 big.Int //gcassert:noescape
return z.inner(&tmp1).CmpAbs(y.inner(&tmp2))
}
// Div calls (big.Int).Div.
func (z *BigInt) Div(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Div(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// DivMod calls (big.Int).DivMod.
func (z *BigInt) DivMod(x, y, m *BigInt) (*BigInt, *BigInt) {
var tmp1, tmp2, tmp3, tmp4 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
mi := m.inner(&tmp2)
// NOTE: innerOrAlias for the y param because (big.Int).DivMod needs to
// detect when y is aliased to the receiver.
zi.DivMod(x.inner(&tmp3), y.innerOrAlias(&tmp4, z, zi), mi)
z.updateInner(zi)
m.updateInner(mi)
return z, m
}
// Exp calls (big.Int).Exp.
func (z *BigInt) Exp(x, y, m *BigInt) *BigInt {
var tmp1, tmp2, tmp3, tmp4 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if zi.Exp(x.inner(&tmp2), y.inner(&tmp3), m.innerOrNil(&tmp4)) == nil {
return nil
}
z.updateInner(zi)
return z
}
// Format calls (big.Int).Format.
func (z *BigInt) Format(s fmt.State, ch rune) {
var tmp1 big.Int //gcassert:noescape
z.innerOrNil(&tmp1).Format(s, ch)
}
// GCD calls (big.Int).GCD.
func (z *BigInt) GCD(x, y, a, b *BigInt) *BigInt {
var tmp1, tmp2, tmp3, tmp4, tmp5 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
ai := a.inner(&tmp2)
bi := b.inner(&tmp3)
xi := x.innerOrNil(&tmp4)
// NOTE: innerOrNilOrAlias for the y param because (big.Int).GCD needs to
// detect when y is aliased to b. See "avoid aliasing b" in lehmerGCD.
yi := y.innerOrNilOrAlias(&tmp5, b, bi)
zi.GCD(xi, yi, ai, bi)
z.updateInner(zi)
if xi != nil {
x.updateInner(xi)
}
if yi != nil {
y.updateInner(yi)
}
return z
}
// GobEncode calls (big.Int).GobEncode.
func (z *BigInt) GobEncode() ([]byte, error) {
var tmp1 big.Int //gcassert:noescape
return z.innerOrNil(&tmp1).GobEncode()
}
// GobDecode calls (big.Int).GobDecode.
func (z *BigInt) GobDecode(buf []byte) error {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if err := zi.GobDecode(buf); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// Int64 calls (big.Int).Int64.
func (z *BigInt) Int64() int64 {
if zVal, zNeg, ok := z.innerAsUint64(); ok {
// The unchecked cast from uint64 to int64 looks unsafe, but it is
// allowed and is identical to the logic in (big.Int).Int64. Per the
// method's contract:
// > If z cannot be represented in an int64, the result is undefined.
zi := int64(zVal)
if zNeg {
zi = -zi
}
return zi
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Int64()
}
// IsInt64 calls (big.Int).IsInt64.
func (z *BigInt) IsInt64() bool {
if zVal, zNeg, ok := z.innerAsUint64(); ok {
// From (big.Int).IsInt64.
zi := int64(zVal)
return zi >= 0 || zNeg && zi == -zi
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).IsInt64()
}
// IsUint64 calls (big.Int).IsUint64.
func (z *BigInt) IsUint64() bool {
if _, zNeg, ok := z.innerAsUint64(); ok {
return !zNeg
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).IsUint64()
}
// Lsh calls (big.Int).Lsh.
func (z *BigInt) Lsh(x *BigInt, n uint) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Lsh(x.inner(&tmp2), n)
z.updateInner(zi)
return z
}
// MarshalJSON calls (big.Int).MarshalJSON.
func (z *BigInt) MarshalJSON() ([]byte, error) {
var tmp1 big.Int //gcassert:noescape
return z.innerOrNil(&tmp1).MarshalJSON()
}
// MarshalText calls (big.Int).MarshalText.
func (z *BigInt) MarshalText() (text []byte, err error) {
var tmp1 big.Int //gcassert:noescape
return z.innerOrNil(&tmp1).MarshalText()
}
// Mod calls (big.Int).Mod.
func (z *BigInt) Mod(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
// NOTE: innerOrAlias for the y param because (big.Int).Mod needs to detect
// when y is aliased to the receiver.
zi.Mod(x.inner(&tmp2), y.innerOrAlias(&tmp3, z, zi))
z.updateInner(zi)
return z
}
// ModInverse calls (big.Int).ModInverse.
func (z *BigInt) ModInverse(g, n *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if zi.ModInverse(g.inner(&tmp2), n.inner(&tmp3)) == nil {
return nil
}
z.updateInner(zi)
return z
}
// ModSqrt calls (big.Int).ModSqrt.
func (z *BigInt) ModSqrt(x, p *BigInt) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
var tmp3 big.Int // escapes because of https://github.com/golang/go/pull/50527.
zi := z.inner(&tmp1)
if zi.ModSqrt(x.inner(&tmp2), p.inner(&tmp3)) == nil {
return nil
}
z.updateInner(zi)
return z
}
// Mul calls (big.Int).Mul.
func (z *BigInt) Mul(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
if zVal, zNeg, ok := mulInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint64(zVal, zNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Mul(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// MulRange calls (big.Int).MulRange.
func (z *BigInt) MulRange(x, y int64) *BigInt {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.MulRange(x, y)
z.updateInner(zi)
return z
}
// Neg calls (big.Int).Neg.
func (z *BigInt) Neg(x *BigInt) *BigInt {
if x.isInline() {
z._inline = x._inline
if x._inner == negSentinel {
z._inner = nil
} else {
z._inner = negSentinel
}
return z
}
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Neg(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// Not calls (big.Int).Not.
func (z *BigInt) Not(x *BigInt) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Not(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// Or calls (big.Int).Or.
func (z *BigInt) Or(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Or(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// ProbablyPrime calls (big.Int).ProbablyPrime.
func (z *BigInt) ProbablyPrime(n int) bool {
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).ProbablyPrime(n)
}
// Quo calls (big.Int).Quo.
func (z *BigInt) Quo(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
if quoVal, quoNeg, ok := quoInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint64(quoVal, quoNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Quo(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// QuoRem calls (big.Int).QuoRem.
func (z *BigInt) QuoRem(x, y, r *BigInt) (*BigInt, *BigInt) {
if xVal, xNeg, ok := x.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
if quoVal, quoNeg, ok := quoInline(xVal, yVal, xNeg, yNeg); ok {
if remVal, remNeg, ok := remInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint64(quoVal, quoNeg)
r.updateInnerFromUint64(remVal, remNeg)
return z, r
}
}
}
}
var tmp1, tmp2, tmp3, tmp4 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
ri := r.inner(&tmp2)
zi.QuoRem(x.inner(&tmp3), y.inner(&tmp4), ri)
z.updateInner(zi)
r.updateInner(ri)
return z, r
}
// Rand calls (big.Int).Rand.
func (z *BigInt) Rand(rnd *rand.Rand, n *BigInt) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Rand(rnd, n.inner(&tmp2))
z.updateInner(zi)
return z
}
// Rem calls (big.Int).Rem.
func (z *BigInt) Rem(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
if remVal, remNeg, ok := remInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint64(remVal, remNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Rem(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// Rsh calls (big.Int).Rsh.
func (z *BigInt) Rsh(x *BigInt, n uint) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Rsh(x.inner(&tmp2), n)
z.updateInner(zi)
return z
}
// Scan calls (big.Int).Scan.
func (z *BigInt) Scan(s fmt.ScanState, ch rune) error {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if err := zi.Scan(s, ch); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// Set calls (big.Int).Set.
func (z *BigInt) Set(x *BigInt) *BigInt {
if x.isInline() {
*z = *x
return z
}
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Set(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// SetBit calls (big.Int).SetBit.
func (z *BigInt) SetBit(x *BigInt, i int, b uint) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.SetBit(x.inner(&tmp2), i, b)
z.updateInner(zi)
return z
}
// SetBits calls (big.Int).SetBits.
func (z *BigInt) SetBits(abs []big.Word) *BigInt {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.SetBits(abs)
z.updateInner(zi)
return z
}
// SetBytes calls (big.Int).SetBytes.
func (z *BigInt) SetBytes(buf []byte) *BigInt {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.SetBytes(buf)
z.updateInner(zi)
return z
}
// SetInt64 calls (big.Int).SetInt64.
func (z *BigInt) SetInt64(x int64) *BigInt {
neg := false
if x < 0 {
neg = true
x = -x
}
z.updateInnerFromUint64(uint64(x), neg)
return z
}
// SetString calls (big.Int).SetString.
func (z *BigInt) SetString(s string, base int) (*BigInt, bool) {
if i, err := strconv.ParseInt(s, base, 64); err == nil {
z.SetInt64(i)
return z, true
}
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if _, ok := zi.SetString(s, base); !ok {
return nil, false
}
z.updateInner(zi)
return z, true
}
// SetUint64 calls (big.Int).SetUint64.
func (z *BigInt) SetUint64(x uint64) *BigInt {
z.updateInnerFromUint64(x, false)
return z
}
// Sign calls (big.Int).Sign.
func (z *BigInt) Sign() int {
if z._inner == nil {
if z._inline == [inlineWords]big.Word{} {
return 0
}
return 1
} else if z._inner == negSentinel {
return -1
}
return z._inner.Sign()
}
// Sqrt calls (big.Int).Sqrt.
func (z *BigInt) Sqrt(x *BigInt) *BigInt {
var tmp1, tmp2 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Sqrt(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// String calls (big.Int).String.
func (z *BigInt) String() string {
if z == nil {
// Fast-path that avoids innerOrNil, allowing inner to be inlined.
return "<nil>"
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).String()
}
// Sub calls (big.Int).Sub.
func (z *BigInt) Sub(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint64(); ok {
if yVal, yNeg, ok := y.innerAsUint64(); ok {
if zVal, zNeg, ok := addInline(xVal, yVal, xNeg, !yNeg); ok {
z.updateInnerFromUint64(zVal, zNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Sub(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// Text calls (big.Int).Text.
func (z *BigInt) Text(base int) string {
if z == nil {
// Fast-path that avoids innerOrNil, allowing inner to be inlined.
return "<nil>"
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Text(base)
}
// TrailingZeroBits calls (big.Int).TrailingZeroBits.
func (z *BigInt) TrailingZeroBits() uint {
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).TrailingZeroBits()
}
// Uint64 calls (big.Int).Uint64.
func (z *BigInt) Uint64() uint64 {
if zVal, _, ok := z.innerAsUint64(); ok {
return zVal
}
var tmp1 big.Int //gcassert:noescape
return z.inner(&tmp1).Uint64()
}
// UnmarshalJSON calls (big.Int).UnmarshalJSON.
func (z *BigInt) UnmarshalJSON(text []byte) error {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if err := zi.UnmarshalJSON(text); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// UnmarshalText calls (big.Int).UnmarshalText.
func (z *BigInt) UnmarshalText(text []byte) error {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
if err := zi.UnmarshalText(text); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// Xor calls (big.Int).Xor.
func (z *BigInt) Xor(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Xor(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
///////////////////////////////////////////////////////////////////////////////
// apd.BigInt / math/big.Int interop //
///////////////////////////////////////////////////////////////////////////////
// MathBigInt returns the math/big.Int representation of z.
func (z *BigInt) MathBigInt() *big.Int {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
// NOTE: We can't return zi directly, because it may be pointing into z's
// _inline array. We have disabled escape analysis for such aliasing, so
// this would be unsafe as it would not force the receiver to escape and
// could leave the return value pointing into stack memory.
return new(big.Int).Set(zi)
}
// SetMathBigInt sets z to x and returns z.
func (z *BigInt) SetMathBigInt(x *big.Int) *BigInt {
var tmp1 big.Int //gcassert:noescape
zi := z.inner(&tmp1)
zi.Set(x)
z.updateInner(zi)
return z
}
|