1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package apd_test
import (
"fmt"
"github.com/cockroachdb/apd/v3"
)
// ExampleOverflow demonstrates how to detect or error on overflow.
func ExampleContext_overflow() {
// Create a context that will overflow at 1e3.
c := apd.Context{
MaxExponent: 2,
Traps: apd.Overflow,
}
one := apd.New(1, 0)
d := apd.New(997, 0)
for {
res, err := c.Add(d, d, one)
fmt.Printf("d: %8s, overflow: %5v, err: %v\n", d, res.Overflow(), err)
if err != nil {
return
}
}
// Output:
// d: 998, overflow: false, err: <nil>
// d: 999, overflow: false, err: <nil>
// d: Infinity, overflow: true, err: overflow
}
// ExampleInexact demonstrates how to detect inexact operations.
func ExampleContext_inexact() {
d := apd.New(27, 0)
three := apd.New(3, 0)
c := apd.BaseContext.WithPrecision(5)
for {
res, err := c.Quo(d, d, three)
fmt.Printf("d: %7s, inexact: %5v, err: %v\n", d, res.Inexact(), err)
if err != nil {
return
}
if res.Inexact() {
return
}
}
// Output:
// d: 9.0000, inexact: false, err: <nil>
// d: 3.0000, inexact: false, err: <nil>
// d: 1.0000, inexact: false, err: <nil>
// d: 0.33333, inexact: true, err: <nil>
}
func ExampleContext_Quantize() {
input, _, _ := apd.NewFromString("123.45")
output := new(apd.Decimal)
c := apd.BaseContext.WithPrecision(10)
for i := int32(-3); i <= 3; i++ {
res, _ := c.Quantize(output, input, i)
fmt.Printf("%2v: %s", i, output)
if res != 0 {
fmt.Printf(" (%s)", res)
}
fmt.Println()
}
// Output:
// -3: 123.450
// -2: 123.45
// -1: 123.5 (inexact, rounded)
// 0: 123 (inexact, rounded)
// 1: 1.2E+2 (inexact, rounded)
// 2: 1E+2 (inexact, rounded)
// 3: 0E+3 (inexact, rounded)
}
func ExampleErrDecimal() {
c := apd.BaseContext.WithPrecision(5)
ed := apd.MakeErrDecimal(c)
d := apd.New(10, 0)
fmt.Printf("%s, err: %v\n", d, ed.Err())
ed.Add(d, d, apd.New(2, 1)) // add 20
fmt.Printf("%s, err: %v\n", d, ed.Err())
ed.Quo(d, d, apd.New(0, 0)) // divide by zero
fmt.Printf("%s, err: %v\n", d, ed.Err())
ed.Sub(d, d, apd.New(1, 0)) // attempt to subtract 1
// The subtraction doesn't occur and doesn't change the error.
fmt.Printf("%s, err: %v\n", d, ed.Err())
// Output:
// 10, err: <nil>
// 30, err: <nil>
// Infinity, err: division by zero
// Infinity, err: division by zero
}
// ExampleRoundToIntegralExact demonstrates how to use RoundToIntegralExact to
// check if a number is an integer or not. Note the variations between integer
// (which allows zeros after the decimal point) and strict (which does not). See
// the documentation on Inexact and Rounded.
func ExampleContext_RoundToIntegralExact() {
inputs := []string{
"123.4",
"123.0",
"123",
"12E1",
"120E-1",
"120E-2",
}
for _, input := range inputs {
d, _, _ := apd.NewFromString(input)
res, _ := apd.BaseContext.RoundToIntegralExact(d, d)
integer := !res.Inexact()
strict := !res.Rounded()
fmt.Printf("input: % 6s, output: %3s, integer: %5t, strict: %5t, res:", input, d, integer, strict)
if res != 0 {
fmt.Printf(" %s", res)
}
fmt.Println()
}
// Output:
// input: 123.4, output: 123, integer: false, strict: false, res: inexact, rounded
// input: 123.0, output: 123, integer: true, strict: false, res: rounded
// input: 123, output: 123, integer: true, strict: true, res:
// input: 12E1, output: 120, integer: true, strict: true, res:
// input: 120E-1, output: 12, integer: true, strict: false, res: rounded
// input: 120E-2, output: 1, integer: false, strict: false, res: inexact, rounded
}
|