1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*
Copyright 2020 The Compose Specification Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package graph
import (
"context"
"sync"
"golang.org/x/exp/slices"
"golang.org/x/sync/errgroup"
)
// CollectorFn executes on each graph vertex based on visit order and return associated value
type CollectorFn[S any, T any] func(context.Context, string, S) (T, error)
// VisitorFn executes on each graph nodes based on visit order
type VisitorFn[S any] func(context.Context, string, S) error
type traversal[S any, T any] struct {
*Options
visitor CollectorFn[S, T]
mu sync.Mutex
status map[string]int
results map[string]T
}
type Options struct {
// inverse reverse the traversal direction
inverse bool
// maxConcurrency limit the concurrent execution of visitorFn while walking the graph
maxConcurrency int
// after marks a set of node as starting points walking the graph
after []string
}
const (
vertexEntered = iota
vertexVisited
)
func newTraversal[S, T any](fn CollectorFn[S, T]) *traversal[S, T] {
return &traversal[S, T]{
Options: &Options{},
status: map[string]int{},
results: map[string]T{},
visitor: fn,
}
}
// WithMaxConcurrency configure traversal to limit concurrency walking graph nodes
func WithMaxConcurrency(max int) func(*Options) {
return func(o *Options) {
o.maxConcurrency = max
}
}
// InReverseOrder configure traversal to walk the graph in reverse dependency order
func InReverseOrder(o *Options) {
o.inverse = true
}
// WithRootNodesAndDown creates a graphTraversal to start from selected nodes
func WithRootNodesAndDown(nodes []string) func(*Options) {
return func(o *Options) {
o.after = nodes
}
}
func walk[S, T any](ctx context.Context, g *graph[S], t *traversal[S, T]) error {
expect := len(g.vertices)
if expect == 0 {
return nil
}
// nodeCh need to allow n=expect writers while reader goroutine could have returned after ctx.Done
nodeCh := make(chan *vertex[S], expect)
defer close(nodeCh)
eg, ctx := errgroup.WithContext(ctx)
if t.maxConcurrency > 0 {
eg.SetLimit(t.maxConcurrency + 1)
}
eg.Go(func() error {
for {
select {
case <-ctx.Done():
return nil
case node := <-nodeCh:
expect--
if expect == 0 {
return nil
}
for _, adj := range t.adjacentNodes(node) {
t.visit(ctx, eg, adj, nodeCh)
}
}
}
})
// select nodes to start walking the graph based on traversal.direction
for _, node := range t.extremityNodes(g) {
t.visit(ctx, eg, node, nodeCh)
}
return eg.Wait()
}
func (t *traversal[S, T]) visit(ctx context.Context, eg *errgroup.Group, node *vertex[S], nodeCh chan *vertex[S]) {
if !t.ready(node) {
// don't visit this service yet as dependencies haven't been visited
return
}
if !t.enter(node) {
// another worker already acquired this node
return
}
eg.Go(func() error {
var (
err error
result T
)
if !t.skip(node) {
result, err = t.visitor(ctx, node.key, *node.service)
}
t.done(node, result)
nodeCh <- node
return err
})
}
func (t *traversal[S, T]) extremityNodes(g *graph[S]) []*vertex[S] {
if t.inverse {
return g.roots()
}
return g.leaves()
}
func (t *traversal[S, T]) adjacentNodes(v *vertex[S]) map[string]*vertex[S] {
if t.inverse {
return v.children
}
return v.parents
}
func (t *traversal[S, T]) ready(v *vertex[S]) bool {
t.mu.Lock()
defer t.mu.Unlock()
depends := v.children
if t.inverse {
depends = v.parents
}
for name := range depends {
if t.status[name] != vertexVisited {
return false
}
}
return true
}
func (t *traversal[S, T]) enter(v *vertex[S]) bool {
t.mu.Lock()
defer t.mu.Unlock()
if _, ok := t.status[v.key]; ok {
return false
}
t.status[v.key] = vertexEntered
return true
}
func (t *traversal[S, T]) done(v *vertex[S], result T) {
t.mu.Lock()
defer t.mu.Unlock()
t.status[v.key] = vertexVisited
t.results[v.key] = result
}
func (t *traversal[S, T]) skip(node *vertex[S]) bool {
if len(t.after) == 0 {
return false
}
if slices.Contains(t.after, node.key) {
return false
}
// is none of our starting node is a descendent, skip visit
ancestors := node.descendents()
for _, name := range t.after {
if slices.Contains(ancestors, name) {
return false
}
}
return true
}
|