1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*
Copyright The ocicrypt Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package blockcipher
import (
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"errors"
"fmt"
"hash"
"io"
"github.com/containers/ocicrypt/utils"
)
// AESCTRLayerBlockCipher implements the AES CTR stream cipher
type AESCTRLayerBlockCipher struct {
keylen int // in bytes
reader io.Reader
encrypt bool
stream cipher.Stream
err error
hmac hash.Hash
expHmac []byte
doneEncrypting bool
}
type aesctrcryptor struct {
bc *AESCTRLayerBlockCipher
}
// NewAESCTRLayerBlockCipher returns a new AES SIV block cipher of 256 or 512 bits
func NewAESCTRLayerBlockCipher(bits int) (LayerBlockCipher, error) {
if bits != 256 {
return nil, errors.New("AES CTR bit count not supported")
}
return &AESCTRLayerBlockCipher{keylen: bits / 8}, nil
}
func (r *aesctrcryptor) Read(p []byte) (int, error) {
var (
o int
)
if r.bc.err != nil {
return 0, r.bc.err
}
o, err := utils.FillBuffer(r.bc.reader, p)
if err != nil {
if err == io.EOF {
r.bc.err = err
} else {
return 0, err
}
}
if !r.bc.encrypt {
if _, err := r.bc.hmac.Write(p[:o]); err != nil {
r.bc.err = fmt.Errorf("could not write to hmac: %w", err)
return 0, r.bc.err
}
if r.bc.err == io.EOF {
// Before we return EOF we let the HMAC comparison
// provide a verdict
if !hmac.Equal(r.bc.hmac.Sum(nil), r.bc.expHmac) {
r.bc.err = fmt.Errorf("could not properly decrypt byte stream; exp hmac: '%x', actual hmac: '%s'", r.bc.expHmac, r.bc.hmac.Sum(nil))
return 0, r.bc.err
}
}
}
r.bc.stream.XORKeyStream(p[:o], p[:o])
if r.bc.encrypt {
if _, err := r.bc.hmac.Write(p[:o]); err != nil {
r.bc.err = fmt.Errorf("could not write to hmac: %w", err)
return 0, r.bc.err
}
if r.bc.err == io.EOF {
// Final data encrypted; Do the 'then-MAC' part
r.bc.doneEncrypting = true
}
}
return o, r.bc.err
}
// init initializes an instance
func (bc *AESCTRLayerBlockCipher) init(encrypt bool, reader io.Reader, opts LayerBlockCipherOptions) (LayerBlockCipherOptions, error) {
var (
err error
)
key := opts.Private.SymmetricKey
if len(key) != bc.keylen {
return LayerBlockCipherOptions{}, fmt.Errorf("invalid key length of %d bytes; need %d bytes", len(key), bc.keylen)
}
nonce, ok := opts.GetOpt("nonce")
if !ok {
nonce = make([]byte, aes.BlockSize)
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
return LayerBlockCipherOptions{}, fmt.Errorf("unable to generate random nonce: %w", err)
}
}
block, err := aes.NewCipher(key)
if err != nil {
return LayerBlockCipherOptions{}, fmt.Errorf("aes.NewCipher failed: %w", err)
}
bc.reader = reader
bc.encrypt = encrypt
bc.stream = cipher.NewCTR(block, nonce)
bc.err = nil
bc.hmac = hmac.New(sha256.New, key)
bc.expHmac = opts.Public.Hmac
bc.doneEncrypting = false
if !encrypt && len(bc.expHmac) == 0 {
return LayerBlockCipherOptions{}, errors.New("HMAC is not provided for decryption process")
}
lbco := LayerBlockCipherOptions{
Private: PrivateLayerBlockCipherOptions{
SymmetricKey: key,
CipherOptions: map[string][]byte{
"nonce": nonce,
},
},
}
return lbco, nil
}
// GenerateKey creates a synmmetric key
func (bc *AESCTRLayerBlockCipher) GenerateKey() ([]byte, error) {
key := make([]byte, bc.keylen)
if _, err := io.ReadFull(rand.Reader, key); err != nil {
return nil, err
}
return key, nil
}
// Encrypt takes in layer data and returns the ciphertext and relevant LayerBlockCipherOptions
func (bc *AESCTRLayerBlockCipher) Encrypt(plainDataReader io.Reader, opt LayerBlockCipherOptions) (io.Reader, Finalizer, error) {
lbco, err := bc.init(true, plainDataReader, opt)
if err != nil {
return nil, nil, err
}
finalizer := func() (LayerBlockCipherOptions, error) {
if !bc.doneEncrypting {
return LayerBlockCipherOptions{}, errors.New("Read()ing not complete, unable to finalize")
}
if lbco.Public.CipherOptions == nil {
lbco.Public.CipherOptions = map[string][]byte{}
}
lbco.Public.Hmac = bc.hmac.Sum(nil)
return lbco, nil
}
return &aesctrcryptor{bc}, finalizer, nil
}
// Decrypt takes in layer ciphertext data and returns the plaintext and relevant LayerBlockCipherOptions
func (bc *AESCTRLayerBlockCipher) Decrypt(encDataReader io.Reader, opt LayerBlockCipherOptions) (io.Reader, LayerBlockCipherOptions, error) {
lbco, err := bc.init(false, encDataReader, opt)
if err != nil {
return nil, LayerBlockCipherOptions{}, err
}
return utils.NewDelayedReader(&aesctrcryptor{bc}, 1024*10), lbco, nil
}
|