File: simulation_test.go

package info (click to toggle)
golang-github-coreos-bbolt 1.3.1-coreos.5-3
  • links: PTS, VCS
  • area: main
  • in suites: buster, experimental, sid
  • size: 600 kB
  • sloc: makefile: 25
file content (336 lines) | stat: -rw-r--r-- 7,983 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
package bolt_test

import (
	"bytes"
	"fmt"
	"math/rand"
	"sync"
	"testing"

	"github.com/coreos/bbolt"
)

func TestSimulate_1op_1p(t *testing.T)     { testSimulate(t, nil, 1, 1, 1) }
func TestSimulate_10op_1p(t *testing.T)    { testSimulate(t, nil, 1, 10, 1) }
func TestSimulate_100op_1p(t *testing.T)   { testSimulate(t, nil, 1, 100, 1) }
func TestSimulate_1000op_1p(t *testing.T)  { testSimulate(t, nil, 1, 1000, 1) }
func TestSimulate_10000op_1p(t *testing.T) { testSimulate(t, nil, 1, 10000, 1) }

func TestSimulate_10op_10p(t *testing.T)    { testSimulate(t, nil, 1, 10, 10) }
func TestSimulate_100op_10p(t *testing.T)   { testSimulate(t, nil, 1, 100, 10) }
func TestSimulate_1000op_10p(t *testing.T)  { testSimulate(t, nil, 1, 1000, 10) }
func TestSimulate_10000op_10p(t *testing.T) { testSimulate(t, nil, 1, 10000, 10) }

func TestSimulate_100op_100p(t *testing.T)   { testSimulate(t, nil, 1, 100, 100) }
func TestSimulate_1000op_100p(t *testing.T)  { testSimulate(t, nil, 1, 1000, 100) }
func TestSimulate_10000op_100p(t *testing.T) { testSimulate(t, nil, 1, 10000, 100) }

func TestSimulate_10000op_1000p(t *testing.T) { testSimulate(t, nil, 1, 10000, 1000) }

// Randomly generate operations on a given database with multiple clients to ensure consistency and thread safety.
func testSimulate(t *testing.T, openOption *bolt.Options, round, threadCount, parallelism int) {
	if testing.Short() {
		t.Skip("skipping test in short mode.")
	}

	rand.Seed(int64(qseed))

	// A list of operations that readers and writers can perform.
	var readerHandlers = []simulateHandler{simulateGetHandler}
	var writerHandlers = []simulateHandler{simulateGetHandler, simulatePutHandler}

	var versions = make(map[int]*QuickDB)
	versions[1] = NewQuickDB()

	db := MustOpenWithOption(openOption)
	defer db.MustClose()

	var mutex sync.Mutex

	// Run n threads in parallel, each with their own operation.
	var wg sync.WaitGroup

	for n := 0; n < round; n++ {

		var threads = make(chan bool, parallelism)
		var i int
		for {
			threads <- true
			wg.Add(1)
			writable := ((rand.Int() % 100) < 20) // 20% writers

			// Choose an operation to execute.
			var handler simulateHandler
			if writable {
				handler = writerHandlers[rand.Intn(len(writerHandlers))]
			} else {
				handler = readerHandlers[rand.Intn(len(readerHandlers))]
			}

			// Execute a thread for the given operation.
			go func(writable bool, handler simulateHandler) {
				defer wg.Done()

				// Start transaction.
				tx, err := db.Begin(writable)
				if err != nil {
					t.Fatal("tx begin: ", err)
				}

				// Obtain current state of the dataset.
				mutex.Lock()
				var qdb = versions[tx.ID()]
				if writable {
					qdb = versions[tx.ID()-1].Copy()
				}
				mutex.Unlock()

				// Make sure we commit/rollback the tx at the end and update the state.
				if writable {
					defer func() {
						mutex.Lock()
						versions[tx.ID()] = qdb
						mutex.Unlock()

						if err := tx.Commit(); err != nil {
							t.Fatal(err)
						}
					}()
				} else {
					defer func() { _ = tx.Rollback() }()
				}

				// Ignore operation if we don't have data yet.
				if qdb == nil {
					return
				}

				// Execute handler.
				handler(tx, qdb)

				// Release a thread back to the scheduling loop.
				<-threads
			}(writable, handler)

			i++
			if i > threadCount {
				break
			}
		}

		// Wait until all threads are done.
		wg.Wait()

		db.MustClose()
		db.MustReopen()
	}
}

type simulateHandler func(tx *bolt.Tx, qdb *QuickDB)

// Retrieves a key from the database and verifies that it is what is expected.
func simulateGetHandler(tx *bolt.Tx, qdb *QuickDB) {
	// Randomly retrieve an existing exist.
	keys := qdb.Rand()
	if len(keys) == 0 {
		return
	}

	// Retrieve root bucket.
	b := tx.Bucket(keys[0])
	if b == nil {
		panic(fmt.Sprintf("bucket[0] expected: %08x\n", trunc(keys[0], 4)))
	}

	// Drill into nested buckets.
	for _, key := range keys[1 : len(keys)-1] {
		b = b.Bucket(key)
		if b == nil {
			panic(fmt.Sprintf("bucket[n] expected: %v -> %v\n", keys, key))
		}
	}

	// Verify key/value on the final bucket.
	expected := qdb.Get(keys)
	actual := b.Get(keys[len(keys)-1])
	if !bytes.Equal(actual, expected) {
		fmt.Println("=== EXPECTED ===")
		fmt.Println(expected)
		fmt.Println("=== ACTUAL ===")
		fmt.Println(actual)
		fmt.Println("=== END ===")
		panic("value mismatch")
	}
}

// Inserts a key into the database.
func simulatePutHandler(tx *bolt.Tx, qdb *QuickDB) {
	var err error
	keys, value := randKeys(), randValue()

	// Retrieve root bucket.
	b := tx.Bucket(keys[0])
	if b == nil {
		b, err = tx.CreateBucket(keys[0])
		if err != nil {
			panic("create bucket: " + err.Error())
		}
	}

	// Create nested buckets, if necessary.
	for _, key := range keys[1 : len(keys)-1] {
		child := b.Bucket(key)
		if child != nil {
			b = child
		} else {
			b, err = b.CreateBucket(key)
			if err != nil {
				panic("create bucket: " + err.Error())
			}
		}
	}

	// Insert into database.
	if err := b.Put(keys[len(keys)-1], value); err != nil {
		panic("put: " + err.Error())
	}

	// Insert into in-memory database.
	qdb.Put(keys, value)
}

// QuickDB is an in-memory database that replicates the functionality of the
// Bolt DB type except that it is entirely in-memory. It is meant for testing
// that the Bolt database is consistent.
type QuickDB struct {
	sync.RWMutex
	m map[string]interface{}
}

// NewQuickDB returns an instance of QuickDB.
func NewQuickDB() *QuickDB {
	return &QuickDB{m: make(map[string]interface{})}
}

// Get retrieves the value at a key path.
func (db *QuickDB) Get(keys [][]byte) []byte {
	db.RLock()
	defer db.RUnlock()

	m := db.m
	for _, key := range keys[:len(keys)-1] {
		value := m[string(key)]
		if value == nil {
			return nil
		}
		switch value := value.(type) {
		case map[string]interface{}:
			m = value
		case []byte:
			return nil
		}
	}

	// Only return if it's a simple value.
	if value, ok := m[string(keys[len(keys)-1])].([]byte); ok {
		return value
	}
	return nil
}

// Put inserts a value into a key path.
func (db *QuickDB) Put(keys [][]byte, value []byte) {
	db.Lock()
	defer db.Unlock()

	// Build buckets all the way down the key path.
	m := db.m
	for _, key := range keys[:len(keys)-1] {
		if _, ok := m[string(key)].([]byte); ok {
			return // Keypath intersects with a simple value. Do nothing.
		}

		if m[string(key)] == nil {
			m[string(key)] = make(map[string]interface{})
		}
		m = m[string(key)].(map[string]interface{})
	}

	// Insert value into the last key.
	m[string(keys[len(keys)-1])] = value
}

// Rand returns a random key path that points to a simple value.
func (db *QuickDB) Rand() [][]byte {
	db.RLock()
	defer db.RUnlock()
	if len(db.m) == 0 {
		return nil
	}
	var keys [][]byte
	db.rand(db.m, &keys)
	return keys
}

func (db *QuickDB) rand(m map[string]interface{}, keys *[][]byte) {
	i, index := 0, rand.Intn(len(m))
	for k, v := range m {
		if i == index {
			*keys = append(*keys, []byte(k))
			if v, ok := v.(map[string]interface{}); ok {
				db.rand(v, keys)
			}
			return
		}
		i++
	}
	panic("quickdb rand: out-of-range")
}

// Copy copies the entire database.
func (db *QuickDB) Copy() *QuickDB {
	db.RLock()
	defer db.RUnlock()
	return &QuickDB{m: db.copy(db.m)}
}

func (db *QuickDB) copy(m map[string]interface{}) map[string]interface{} {
	clone := make(map[string]interface{}, len(m))
	for k, v := range m {
		switch v := v.(type) {
		case map[string]interface{}:
			clone[k] = db.copy(v)
		default:
			clone[k] = v
		}
	}
	return clone
}

func randKey() []byte {
	var min, max = 1, 1024
	n := rand.Intn(max-min) + min
	b := make([]byte, n)
	for i := 0; i < n; i++ {
		b[i] = byte(rand.Intn(255))
	}
	return b
}

func randKeys() [][]byte {
	var keys [][]byte
	var count = rand.Intn(2) + 2
	for i := 0; i < count; i++ {
		keys = append(keys, randKey())
	}
	return keys
}

func randValue() []byte {
	n := rand.Intn(8192)
	b := make([]byte, n)
	for i := 0; i < n; i++ {
		b[i] = byte(rand.Intn(255))
	}
	return b
}