1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE_go file.
//go:build !math_big_pure_go
// +build !math_big_pure_go
#include "textflag.h"
// This file provides fast assembly versions for the elementary
// arithmetic operations on vectors implemented in arith.go.
TEXT ·mulWW(SB), NOSPLIT, $0
MOVD x+0(FP), R3
MOVD y+8(FP), R4
MULHDU R3, R4
MOVD R10, z1+16(FP)
MOVD R11, z0+24(FP)
RET
// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
// func addVV(z, x, y []Word) (c Word)
TEXT ·addVV(SB), NOSPLIT, $0
MOVD saferith_addvectorfacility+0x00(SB), R1
BR (R1)
TEXT ·addVV_check(SB), NOSPLIT, $0
MOVB ·hasVX(SB), R1
CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported
MOVD $saferith_addvectorfacility+0x00(SB), R1
MOVD $·addVV_novec(SB), R2
MOVD R2, 0(R1)
// MOVD $·addVV_novec(SB), 0(R1)
BR ·addVV_novec(SB)
vectorimpl:
MOVD $saferith_addvectorfacility+0x00(SB), R1
MOVD $·addVV_vec(SB), R2
MOVD R2, 0(R1)
// MOVD $·addVV_vec(SB), 0(R1)
BR ·addVV_vec(SB)
GLOBL saferith_addvectorfacility+0x00(SB), NOPTR, $8
DATA saferith_addvectorfacility+0x00(SB)/8, $·addVV_check(SB)
TEXT ·addVV_vec(SB), NOSPLIT, $0
MOVD z_len+8(FP), R3
MOVD x+24(FP), R8
MOVD y+48(FP), R9
MOVD z+0(FP), R2
MOVD $0, R4 // c = 0
MOVD $0, R0 // make sure it's zero
MOVD $0, R10 // i = 0
// s/JL/JMP/ below to disable the unrolled loop
SUB $4, R3
BLT v1
SUB $12, R3 // n -= 16
BLT A1 // if n < 0 goto A1
MOVD R8, R5
MOVD R9, R6
MOVD R2, R7
// n >= 0
// regular loop body unrolled 16x
VZERO V0 // c = 0
UU1:
VLM 0(R5), V1, V4 // 64-bytes into V1..V8
ADD $64, R5
VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order
VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order
VLM 0(R6), V9, V12 // 64-bytes into V9..V16
ADD $64, R6
VPDI $0x4, V9, V9, V9 // flip the doublewords to big-endian order
VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order
VACCCQ V1, V9, V0, V25
VACQ V1, V9, V0, V17
VACCCQ V2, V10, V25, V26
VACQ V2, V10, V25, V18
VLM 0(R5), V5, V6 // 32-bytes into V1..V8
VLM 0(R6), V13, V14 // 32-bytes into V9..V16
ADD $32, R5
ADD $32, R6
VPDI $0x4, V3, V3, V3 // flip the doublewords to big-endian order
VPDI $0x4, V4, V4, V4 // flip the doublewords to big-endian order
VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order
VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order
VACCCQ V3, V11, V26, V27
VACQ V3, V11, V26, V19
VACCCQ V4, V12, V27, V28
VACQ V4, V12, V27, V20
VLM 0(R5), V7, V8 // 32-bytes into V1..V8
VLM 0(R6), V15, V16 // 32-bytes into V9..V16
ADD $32, R5
ADD $32, R6
VPDI $0x4, V5, V5, V5 // flip the doublewords to big-endian order
VPDI $0x4, V6, V6, V6 // flip the doublewords to big-endian order
VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order
VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order
VACCCQ V5, V13, V28, V29
VACQ V5, V13, V28, V21
VACCCQ V6, V14, V29, V30
VACQ V6, V14, V29, V22
VPDI $0x4, V7, V7, V7 // flip the doublewords to big-endian order
VPDI $0x4, V8, V8, V8 // flip the doublewords to big-endian order
VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order
VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order
VACCCQ V7, V15, V30, V31
VACQ V7, V15, V30, V23
VACCCQ V8, V16, V31, V0 // V0 has carry-over
VACQ V8, V16, V31, V24
VPDI $0x4, V17, V17, V17 // flip the doublewords to big-endian order
VPDI $0x4, V18, V18, V18 // flip the doublewords to big-endian order
VPDI $0x4, V19, V19, V19 // flip the doublewords to big-endian order
VPDI $0x4, V20, V20, V20 // flip the doublewords to big-endian order
VPDI $0x4, V21, V21, V21 // flip the doublewords to big-endian order
VPDI $0x4, V22, V22, V22 // flip the doublewords to big-endian order
VPDI $0x4, V23, V23, V23 // flip the doublewords to big-endian order
VPDI $0x4, V24, V24, V24 // flip the doublewords to big-endian order
VSTM V17, V24, 0(R7) // 128-bytes into z
ADD $128, R7
ADD $128, R10 // i += 16
SUB $16, R3 // n -= 16
BGE UU1 // if n >= 0 goto U1
VLGVG $1, V0, R4 // put cf into R4
NEG R4, R4 // save cf
A1:
ADD $12, R3 // n += 16
// s/JL/JMP/ below to disable the unrolled loop
BLT v1 // if n < 0 goto v1
U1: // n >= 0
// regular loop body unrolled 4x
MOVD 0(R8)(R10*1), R5
MOVD 8(R8)(R10*1), R6
MOVD 16(R8)(R10*1), R7
MOVD 24(R8)(R10*1), R1
ADDC R4, R4 // restore CF
MOVD 0(R9)(R10*1), R11
ADDE R11, R5
MOVD 8(R9)(R10*1), R11
ADDE R11, R6
MOVD 16(R9)(R10*1), R11
ADDE R11, R7
MOVD 24(R9)(R10*1), R11
ADDE R11, R1
MOVD R0, R4
ADDE R4, R4 // save CF
NEG R4, R4
MOVD R5, 0(R2)(R10*1)
MOVD R6, 8(R2)(R10*1)
MOVD R7, 16(R2)(R10*1)
MOVD R1, 24(R2)(R10*1)
ADD $32, R10 // i += 4
SUB $4, R3 // n -= 4
BGE U1 // if n >= 0 goto U1
v1:
ADD $4, R3 // n += 4
BLE E1 // if n <= 0 goto E1
L1: // n > 0
ADDC R4, R4 // restore CF
MOVD 0(R8)(R10*1), R5
MOVD 0(R9)(R10*1), R11
ADDE R11, R5
MOVD R5, 0(R2)(R10*1)
MOVD R0, R4
ADDE R4, R4 // save CF
NEG R4, R4
ADD $8, R10 // i++
SUB $1, R3 // n--
BGT L1 // if n > 0 goto L1
E1:
NEG R4, R4
MOVD R4, c+72(FP) // return c
RET
TEXT ·addVV_novec(SB), NOSPLIT, $0
novec:
MOVD z_len+8(FP), R3
MOVD x+24(FP), R8
MOVD y+48(FP), R9
MOVD z+0(FP), R2
MOVD $0, R4 // c = 0
MOVD $0, R0 // make sure it's zero
MOVD $0, R10 // i = 0
// s/JL/JMP/ below to disable the unrolled loop
SUB $4, R3 // n -= 4
BLT v1n // if n < 0 goto v1n
U1n: // n >= 0
// regular loop body unrolled 4x
MOVD 0(R8)(R10*1), R5
MOVD 8(R8)(R10*1), R6
MOVD 16(R8)(R10*1), R7
MOVD 24(R8)(R10*1), R1
ADDC R4, R4 // restore CF
MOVD 0(R9)(R10*1), R11
ADDE R11, R5
MOVD 8(R9)(R10*1), R11
ADDE R11, R6
MOVD 16(R9)(R10*1), R11
ADDE R11, R7
MOVD 24(R9)(R10*1), R11
ADDE R11, R1
MOVD R0, R4
ADDE R4, R4 // save CF
NEG R4, R4
MOVD R5, 0(R2)(R10*1)
MOVD R6, 8(R2)(R10*1)
MOVD R7, 16(R2)(R10*1)
MOVD R1, 24(R2)(R10*1)
ADD $32, R10 // i += 4
SUB $4, R3 // n -= 4
BGE U1n // if n >= 0 goto U1n
v1n:
ADD $4, R3 // n += 4
BLE E1n // if n <= 0 goto E1n
L1n: // n > 0
ADDC R4, R4 // restore CF
MOVD 0(R8)(R10*1), R5
MOVD 0(R9)(R10*1), R11
ADDE R11, R5
MOVD R5, 0(R2)(R10*1)
MOVD R0, R4
ADDE R4, R4 // save CF
NEG R4, R4
ADD $8, R10 // i++
SUB $1, R3 // n--
BGT L1n // if n > 0 goto L1n
E1n:
NEG R4, R4
MOVD R4, c+72(FP) // return c
RET
TEXT ·subVV(SB), NOSPLIT, $0
MOVD saferith_subvectorfacility+0x00(SB), R1
BR (R1)
TEXT ·subVV_check(SB), NOSPLIT, $0
MOVB ·hasVX(SB), R1
CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported
MOVD $saferith_subvectorfacility+0x00(SB), R1
MOVD $·subVV_novec(SB), R2
MOVD R2, 0(R1)
// MOVD $·subVV_novec(SB), 0(R1)
BR ·subVV_novec(SB)
vectorimpl:
MOVD $saferith_subvectorfacility+0x00(SB), R1
MOVD $·subVV_vec(SB), R2
MOVD R2, 0(R1)
// MOVD $·subVV_vec(SB), 0(R1)
BR ·subVV_vec(SB)
GLOBL saferith_subvectorfacility+0x00(SB), NOPTR, $8
DATA saferith_subvectorfacility+0x00(SB)/8, $·subVV_check(SB)
// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
// func subVV(z, x, y []Word) (c Word)
// (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names)
TEXT ·subVV_vec(SB), NOSPLIT, $0
MOVD z_len+8(FP), R3
MOVD x+24(FP), R8
MOVD y+48(FP), R9
MOVD z+0(FP), R2
MOVD $0, R4 // c = 0
MOVD $0, R0 // make sure it's zero
MOVD $0, R10 // i = 0
// s/JL/JMP/ below to disable the unrolled loop
SUB $4, R3 // n -= 4
BLT v1 // if n < 0 goto v1
SUB $12, R3 // n -= 16
BLT A1 // if n < 0 goto A1
MOVD R8, R5
MOVD R9, R6
MOVD R2, R7
// n >= 0
// regular loop body unrolled 16x
VZERO V0 // cf = 0
MOVD $1, R4 // for 390 subtraction cf starts as 1 (no borrow)
VLVGG $1, R4, V0 // put carry into V0
UU1:
VLM 0(R5), V1, V4 // 64-bytes into V1..V8
ADD $64, R5
VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order
VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order
VLM 0(R6), V9, V12 // 64-bytes into V9..V16
ADD $64, R6
VPDI $0x4, V9, V9, V9 // flip the doublewords to big-endian order
VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order
VSBCBIQ V1, V9, V0, V25
VSBIQ V1, V9, V0, V17
VSBCBIQ V2, V10, V25, V26
VSBIQ V2, V10, V25, V18
VLM 0(R5), V5, V6 // 32-bytes into V1..V8
VLM 0(R6), V13, V14 // 32-bytes into V9..V16
ADD $32, R5
ADD $32, R6
VPDI $0x4, V3, V3, V3 // flip the doublewords to big-endian order
VPDI $0x4, V4, V4, V4 // flip the doublewords to big-endian order
VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order
VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order
VSBCBIQ V3, V11, V26, V27
VSBIQ V3, V11, V26, V19
VSBCBIQ V4, V12, V27, V28
VSBIQ V4, V12, V27, V20
VLM 0(R5), V7, V8 // 32-bytes into V1..V8
VLM 0(R6), V15, V16 // 32-bytes into V9..V16
ADD $32, R5
ADD $32, R6
VPDI $0x4, V5, V5, V5 // flip the doublewords to big-endian order
VPDI $0x4, V6, V6, V6 // flip the doublewords to big-endian order
VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order
VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order
VSBCBIQ V5, V13, V28, V29
VSBIQ V5, V13, V28, V21
VSBCBIQ V6, V14, V29, V30
VSBIQ V6, V14, V29, V22
VPDI $0x4, V7, V7, V7 // flip the doublewords to big-endian order
VPDI $0x4, V8, V8, V8 // flip the doublewords to big-endian order
VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order
VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order
VSBCBIQ V7, V15, V30, V31
VSBIQ V7, V15, V30, V23
VSBCBIQ V8, V16, V31, V0 // V0 has carry-over
VSBIQ V8, V16, V31, V24
VPDI $0x4, V17, V17, V17 // flip the doublewords to big-endian order
VPDI $0x4, V18, V18, V18 // flip the doublewords to big-endian order
VPDI $0x4, V19, V19, V19 // flip the doublewords to big-endian order
VPDI $0x4, V20, V20, V20 // flip the doublewords to big-endian order
VPDI $0x4, V21, V21, V21 // flip the doublewords to big-endian order
VPDI $0x4, V22, V22, V22 // flip the doublewords to big-endian order
VPDI $0x4, V23, V23, V23 // flip the doublewords to big-endian order
VPDI $0x4, V24, V24, V24 // flip the doublewords to big-endian order
VSTM V17, V24, 0(R7) // 128-bytes into z
ADD $128, R7
ADD $128, R10 // i += 16
SUB $16, R3 // n -= 16
BGE UU1 // if n >= 0 goto U1
VLGVG $1, V0, R4 // put cf into R4
SUB $1, R4 // save cf
A1:
ADD $12, R3 // n += 16
BLT v1 // if n < 0 goto v1
U1: // n >= 0
// regular loop body unrolled 4x
MOVD 0(R8)(R10*1), R5
MOVD 8(R8)(R10*1), R6
MOVD 16(R8)(R10*1), R7
MOVD 24(R8)(R10*1), R1
MOVD R0, R11
SUBC R4, R11 // restore CF
MOVD 0(R9)(R10*1), R11
SUBE R11, R5
MOVD 8(R9)(R10*1), R11
SUBE R11, R6
MOVD 16(R9)(R10*1), R11
SUBE R11, R7
MOVD 24(R9)(R10*1), R11
SUBE R11, R1
MOVD R0, R4
SUBE R4, R4 // save CF
MOVD R5, 0(R2)(R10*1)
MOVD R6, 8(R2)(R10*1)
MOVD R7, 16(R2)(R10*1)
MOVD R1, 24(R2)(R10*1)
ADD $32, R10 // i += 4
SUB $4, R3 // n -= 4
BGE U1 // if n >= 0 goto U1n
v1:
ADD $4, R3 // n += 4
BLE E1 // if n <= 0 goto E1
L1: // n > 0
MOVD R0, R11
SUBC R4, R11 // restore CF
MOVD 0(R8)(R10*1), R5
MOVD 0(R9)(R10*1), R11
SUBE R11, R5
MOVD R5, 0(R2)(R10*1)
MOVD R0, R4
SUBE R4, R4 // save CF
ADD $8, R10 // i++
SUB $1, R3 // n--
BGT L1 // if n > 0 goto L1n
E1:
NEG R4, R4
MOVD R4, c+72(FP) // return c
RET
// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
// func subVV(z, x, y []Word) (c Word)
// (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names)
TEXT ·subVV_novec(SB), NOSPLIT, $0
MOVD z_len+8(FP), R3
MOVD x+24(FP), R8
MOVD y+48(FP), R9
MOVD z+0(FP), R2
MOVD $0, R4 // c = 0
MOVD $0, R0 // make sure it's zero
MOVD $0, R10 // i = 0
// s/JL/JMP/ below to disable the unrolled loop
SUB $4, R3 // n -= 4
BLT v1 // if n < 0 goto v1
U1: // n >= 0
// regular loop body unrolled 4x
MOVD 0(R8)(R10*1), R5
MOVD 8(R8)(R10*1), R6
MOVD 16(R8)(R10*1), R7
MOVD 24(R8)(R10*1), R1
MOVD R0, R11
SUBC R4, R11 // restore CF
MOVD 0(R9)(R10*1), R11
SUBE R11, R5
MOVD 8(R9)(R10*1), R11
SUBE R11, R6
MOVD 16(R9)(R10*1), R11
SUBE R11, R7
MOVD 24(R9)(R10*1), R11
SUBE R11, R1
MOVD R0, R4
SUBE R4, R4 // save CF
MOVD R5, 0(R2)(R10*1)
MOVD R6, 8(R2)(R10*1)
MOVD R7, 16(R2)(R10*1)
MOVD R1, 24(R2)(R10*1)
ADD $32, R10 // i += 4
SUB $4, R3 // n -= 4
BGE U1 // if n >= 0 goto U1
v1:
ADD $4, R3 // n += 4
BLE E1 // if n <= 0 goto E1
L1: // n > 0
MOVD R0, R11
SUBC R4, R11 // restore CF
MOVD 0(R8)(R10*1), R5
MOVD 0(R9)(R10*1), R11
SUBE R11, R5
MOVD R5, 0(R2)(R10*1)
MOVD R0, R4
SUBE R4, R4 // save CF
ADD $8, R10 // i++
SUB $1, R3 // n--
BGT L1 // if n > 0 goto L1
E1:
NEG R4, R4
MOVD R4, c+72(FP) // return c
RET
TEXT ·addVW(SB), NOSPLIT, $0
MOVD z_len+8(FP), R5 // length of z
MOVD x+24(FP), R6
MOVD y+48(FP), R7 // c = y
MOVD z+0(FP), R8
CMPBEQ R5, $0, returnC // if len(z) == 0, we can have an early return
// Add the first two words, and determine which path (copy path or loop path) to take based on the carry flag.
ADDC 0(R6), R7
MOVD R7, 0(R8)
CMPBEQ R5, $1, returnResult // len(z) == 1
MOVD $0, R9
ADDE 8(R6), R9
MOVD R9, 8(R8)
CMPBEQ R5, $2, returnResult // len(z) == 2
// Update the counters
MOVD $16, R12 // i = 2
MOVD $-2(R5), R5 // n = n - 2
loopOverEachWord:
BRC $12, copySetup // carry = 0, copy the rest
MOVD $1, R9
// Originally we used the carry flag generated in the previous iteration
// (i.e: ADDE could be used here to do the addition). However, since we
// already know carry is 1 (otherwise we will go to copy section), we can use
// ADDC here so the current iteration does not depend on the carry flag
// generated in the previous iteration. This could be useful when branch prediction happens.
ADDC 0(R6)(R12*1), R9
MOVD R9, 0(R8)(R12*1) // z[i] = x[i] + c
MOVD $8(R12), R12 // i++
BRCTG R5, loopOverEachWord // n--
// Return the current carry value
returnResult:
MOVD $0, R0
ADDE R0, R0
MOVD R0, c+56(FP)
RET
// Update position of x(R6) and z(R8) based on the current counter value and perform copying.
// With the assumption that x and z will not overlap with each other or x and z will
// point to same memory region, we can use a faster version of copy using only MVC here.
// In the following implementation, we have three copy loops, each copying a word, 4 words, and
// 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove.
copySetup:
ADD R12, R6
ADD R12, R8
CMPBGE R5, $4, mediumLoop
smallLoop: // does a loop unrolling to copy word when n < 4
CMPBEQ R5, $0, returnZero
MVC $8, 0(R6), 0(R8)
CMPBEQ R5, $1, returnZero
MVC $8, 8(R6), 8(R8)
CMPBEQ R5, $2, returnZero
MVC $8, 16(R6), 16(R8)
returnZero:
MOVD $0, c+56(FP) // return 0 as carry
RET
mediumLoop:
CMPBLT R5, $4, smallLoop
CMPBLT R5, $32, mediumLoopBody
largeLoop: // Copying 256 bytes at a time.
MVC $256, 0(R6), 0(R8)
MOVD $256(R6), R6
MOVD $256(R8), R8
MOVD $-32(R5), R5
CMPBGE R5, $32, largeLoop
BR mediumLoop
mediumLoopBody: // Copying 32 bytes at a time
MVC $32, 0(R6), 0(R8)
MOVD $32(R6), R6
MOVD $32(R8), R8
MOVD $-4(R5), R5
CMPBGE R5, $4, mediumLoopBody
BR smallLoop
returnC:
MOVD R7, c+56(FP)
RET
TEXT ·subVW(SB), NOSPLIT, $0
MOVD z_len+8(FP), R5
MOVD x+24(FP), R6
MOVD y+48(FP), R7 // The borrow bit passed in
MOVD z+0(FP), R8
MOVD $0, R0 // R0 is a temporary variable used during computation. Ensure it has zero in it.
CMPBEQ R5, $0, returnC // len(z) == 0, have an early return
// Subtract the first two words, and determine which path (copy path or loop path) to take based on the borrow flag
MOVD 0(R6), R9
SUBC R7, R9
MOVD R9, 0(R8)
CMPBEQ R5, $1, returnResult
MOVD 8(R6), R9
SUBE R0, R9
MOVD R9, 8(R8)
CMPBEQ R5, $2, returnResult
// Update the counters
MOVD $16, R12 // i = 2
MOVD $-2(R5), R5 // n = n - 2
loopOverEachWord:
BRC $3, copySetup // no borrow, copy the rest
MOVD 0(R6)(R12*1), R9
// Originally we used the borrow flag generated in the previous iteration
// (i.e: SUBE could be used here to do the subtraction). However, since we
// already know borrow is 1 (otherwise we will go to copy section), we can
// use SUBC here so the current iteration does not depend on the borrow flag
// generated in the previous iteration. This could be useful when branch prediction happens.
SUBC $1, R9
MOVD R9, 0(R8)(R12*1) // z[i] = x[i] - 1
MOVD $8(R12), R12 // i++
BRCTG R5, loopOverEachWord // n--
// return the current borrow value
returnResult:
SUBE R0, R0
NEG R0, R0
MOVD R0, c+56(FP)
RET
// Update position of x(R6) and z(R8) based on the current counter value and perform copying.
// With the assumption that x and z will not overlap with each other or x and z will
// point to same memory region, we can use a faster version of copy using only MVC here.
// In the following implementation, we have three copy loops, each copying a word, 4 words, and
// 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove.
copySetup:
ADD R12, R6
ADD R12, R8
CMPBGE R5, $4, mediumLoop
smallLoop: // does a loop unrolling to copy word when n < 4
CMPBEQ R5, $0, returnZero
MVC $8, 0(R6), 0(R8)
CMPBEQ R5, $1, returnZero
MVC $8, 8(R6), 8(R8)
CMPBEQ R5, $2, returnZero
MVC $8, 16(R6), 16(R8)
returnZero:
MOVD $0, c+56(FP) // return 0 as borrow
RET
mediumLoop:
CMPBLT R5, $4, smallLoop
CMPBLT R5, $32, mediumLoopBody
largeLoop: // Copying 256 bytes at a time
MVC $256, 0(R6), 0(R8)
MOVD $256(R6), R6
MOVD $256(R8), R8
MOVD $-32(R5), R5
CMPBGE R5, $32, largeLoop
BR mediumLoop
mediumLoopBody: // Copying 32 bytes at a time
MVC $32, 0(R6), 0(R8)
MOVD $32(R6), R6
MOVD $32(R8), R8
MOVD $-4(R5), R5
CMPBGE R5, $4, mediumLoopBody
BR smallLoop
returnC:
MOVD R7, c+56(FP)
RET
// func shlVU(z, x []Word, s uint) (c Word)
TEXT ·shlVU(SB), NOSPLIT, $0
BR ·shlVU_g(SB)
// func shrVU(z, x []Word, s uint) (c Word)
TEXT ·shrVU(SB), NOSPLIT, $0
BR ·shrVU_g(SB)
// CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, DX = r3, AX = r6, BX = R1, (R0 set to 0) + use R11 + use R7 for i
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
TEXT ·mulAddVWW(SB), NOSPLIT, $0
MOVD z+0(FP), R2
MOVD x+24(FP), R8
MOVD y+48(FP), R9
MOVD r+56(FP), R4 // c = r
MOVD z_len+8(FP), R5
MOVD $0, R1 // i = 0
MOVD $0, R7 // i*8 = 0
MOVD $0, R0 // make sure it's zero
BR E5
L5:
MOVD (R8)(R1*1), R6
MULHDU R9, R6
ADDC R4, R11 // add to low order bits
ADDE R0, R6
MOVD R11, (R2)(R1*1)
MOVD R6, R4
ADD $8, R1 // i*8 + 8
ADD $1, R7 // i++
E5:
CMPBLT R7, R5, L5 // i < n
MOVD R4, c+64(FP)
RET
// func addMulVVW(z, x []Word, y Word) (c Word)
// CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, AX = r11, DX = R6, r12=r12, BX = R1, (R0 set to 0) + use R11 + use R7 for i
TEXT ·addMulVVW(SB), NOSPLIT, $0
MOVD z+0(FP), R2
MOVD x+24(FP), R8
MOVD y+48(FP), R9
MOVD z_len+8(FP), R5
MOVD $0, R1 // i*8 = 0
MOVD $0, R7 // i = 0
MOVD $0, R0 // make sure it's zero
MOVD $0, R4 // c = 0
MOVD R5, R12
AND $-2, R12
CMPBGE R5, $2, A6
BR E6
A6:
MOVD (R8)(R1*1), R6
MULHDU R9, R6
MOVD (R2)(R1*1), R10
ADDC R10, R11 // add to low order bits
ADDE R0, R6
ADDC R4, R11
ADDE R0, R6
MOVD R6, R4
MOVD R11, (R2)(R1*1)
MOVD (8)(R8)(R1*1), R6
MULHDU R9, R6
MOVD (8)(R2)(R1*1), R10
ADDC R10, R11 // add to low order bits
ADDE R0, R6
ADDC R4, R11
ADDE R0, R6
MOVD R6, R4
MOVD R11, (8)(R2)(R1*1)
ADD $16, R1 // i*8 + 8
ADD $2, R7 // i++
CMPBLT R7, R12, A6
BR E6
L6:
MOVD (R8)(R1*1), R6
MULHDU R9, R6
MOVD (R2)(R1*1), R10
ADDC R10, R11 // add to low order bits
ADDE R0, R6
ADDC R4, R11
ADDE R0, R6
MOVD R6, R4
MOVD R11, (R2)(R1*1)
ADD $8, R1 // i*8 + 8
ADD $1, R7 // i++
E6:
CMPBLT R7, R5, L6 // i < n
MOVD R4, c+56(FP)
RET
|