1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
|
package saferith
import (
"fmt"
"math/big"
"math/bits"
"strings"
)
// General utilities
// add calculates a + b + carry, returning the sum, and carry
//
// This is a convenient wrapper around bits.Add, and should be optimized
// by the compiler to produce a single ADC instruction.
func add(a, b, carry Word) (sum Word, newCarry Word) {
s, c := bits.Add(uint(a), uint(b), uint(carry))
return Word(s), Word(c)
}
// Constant Time Utilities
// Choice represents a constant-time boolean.
//
// The value of Choice is always either 1 or 0.
//
// We use a separate type instead of bool, in order to be able to make decisions without leaking
// which decision was made.
//
// You can easily convert a Choice into a bool with the operation c == 1.
//
// In general, logical operations on bool become bitwise operations on choice:
// a && b => a & b
// a || b => a | b
// a != b => a ^ b
// !a => 1 ^ a
type Choice Word
// ctEq compares x and y for equality, returning 1 if equal, and 0 otherwise
//
// This doesn't leak any information about either of them
func ctEq(x, y Word) Choice {
// If x == y, then x ^ y should be all zero bits.
q := uint(x ^ y)
// For any q != 0, either the MSB of q, or the MSB of -q is 1.
// We can thus or those together, and check the top bit. When q is zero,
// that means that x and y are equal, so we negate that top bit.
return 1 ^ Choice((q|-q)>>(_W-1))
}
// ctGt checks x > y, returning 1 or 0
//
// This doesn't leak any information about either of them
func ctGt(x, y Word) Choice {
_, b := bits.Sub(uint(y), uint(x), 0)
return Choice(b)
}
// ctIfElse selects x if v = 1, and y otherwise
//
// This doesn't leak the value of any of its inputs
func ctIfElse(v Choice, x, y Word) Word {
// mask should be all 1s if v is 1, otherwise all 0s
mask := -Word(v)
return y ^ (mask & (y ^ x))
}
// ctCondCopy copies y into x, if v == 1, otherwise does nothing
//
// Both slices must have the same length.
//
// LEAK: the length of the slices
//
// Otherwise, which branch was taken isn't leaked
func ctCondCopy(v Choice, x, y []Word) {
if len(x) != len(y) {
panic("ctCondCopy: mismatched arguments")
}
for i := 0; i < len(x); i++ {
x[i] = ctIfElse(v, y[i], x[i])
}
}
// ctCondSwap swaps the contents of a and b, when v == 1, otherwise does nothing
//
// Both slices must have the same length.
//
// LEAK: the length of the slices
//
// Whether or not a swap happened isn't leaked
func ctCondSwap(v Choice, a, b []Word) {
for i := 0; i < len(a) && i < len(b); i++ {
ai := a[i]
a[i] = ctIfElse(v, b[i], ai)
b[i] = ctIfElse(v, ai, b[i])
}
}
// CondAssign sets z <- yes ? x : z.
//
// This function doesn't leak any information about whether the assignment happened.
//
// The announced size of the result will be the largest size between z and x.
func (z *Nat) CondAssign(yes Choice, x *Nat) *Nat {
maxBits := z.maxAnnounced(x)
xLimbs := x.resizedLimbs(maxBits)
z.limbs = z.resizedLimbs(maxBits)
ctCondCopy(yes, z.limbs, xLimbs)
// If the value we're potentially assigning has a different reduction,
// then there's nothing we can conclude about the resulting reduction.
if z.reduced != x.reduced {
z.reduced = nil
}
z.announced = maxBits
return z
}
// "Missing" Functions
// These are routines that could in theory be implemented in assembly,
// but aren't already present in Go's big number routines
// div calculates the quotient and remainder of hi:lo / d
//
// Unlike bits.Div, this doesn't leak anything about the inputs
func div(hi, lo, d Word) (Word, Word) {
var quo Word
hi = ctIfElse(ctEq(hi, d), 0, hi)
for i := _W - 1; i > 0; i-- {
j := _W - i
w := (hi << j) | (lo >> i)
sel := ctEq(w, d) | ctGt(w, d) | Choice(hi>>i)
hi2 := (w - d) >> j
lo2 := lo - (d << i)
hi = ctIfElse(sel, hi2, hi)
lo = ctIfElse(sel, lo2, lo)
quo |= Word(sel)
quo <<= 1
}
sel := ctEq(lo, d) | ctGt(lo, d) | Choice(hi)
quo |= Word(sel)
rem := ctIfElse(sel, lo-d, lo)
return quo, rem
}
// mulSubVVW calculates z -= y * x
//
// This also results in a carry.
func mulSubVVW(z, x []Word, y Word) (c Word) {
for i := 0; i < len(z) && i < len(x); i++ {
hi, lo := mulAddWWW_g(x[i], y, c)
sub, cc := bits.Sub(uint(z[i]), uint(lo), 0)
c, z[i] = Word(cc), Word(sub)
c += hi
}
return
}
// Nat represents an arbitrary sized natural number.
//
// Different methods on Nats will talk about a "capacity". The capacity represents
// the announced size of some number. Operations may vary in time *only* relative
// to this capacity, and not to the actual value of the number.
//
// The capacity of a number is usually inherited through whatever method was used to
// create the number in the first place.
type Nat struct {
// The exact number of bits this number claims to have.
//
// This can differ from the actual number of bits needed to represent this number.
announced int
// If this is set, then the value of this Nat is in the range 0..reduced - 1.
//
// This value should get set based only on statically knowable things, like what
// functions have been called. This means that we will have plenty of false
// negatives, where a value is small enough, but we don't know statically
// that this is the case.
//
// Invariant: If reduced is set, then announced should match the announced size of
// this modulus.
reduced *Modulus
// The limbs representing this number, in little endian order.
//
// Invariant: The bits past announced will not be set. This includes when announced
// isn't a multiple of the limb size.
//
// Invariant: two Nats are not allowed to share the same slice.
// This allows us to use pointer comparison to check that Nats don't alias eachother
limbs []Word
}
// checkInvariants does some internal sanity checks.
//
// This is useful for tests.
func (z *Nat) checkInvariants() bool {
if z.reduced != nil && z.announced != z.reduced.nat.announced {
return false
}
if len(z.limbs) != limbCount(z.announced) {
return false
}
if len(z.limbs) > 0 {
lastLimb := z.limbs[len(z.limbs)-1]
if lastLimb != lastLimb&limbMask(z.announced) {
return false
}
}
return true
}
// maxAnnounced returns the larger announced length of z and y
func (z *Nat) maxAnnounced(y *Nat) int {
maxBits := z.announced
if y.announced > maxBits {
maxBits = y.announced
}
return maxBits
}
// ensureLimbCapacity makes sure that a Nat has capacity for a certain number of limbs
//
// This will modify the slice contained inside the natural, but won't change the size of
// the slice, so it doesn't affect the value of the natural.
//
// LEAK: Probably the current number of limbs, and size
// OK: both of these should be public
func (z *Nat) ensureLimbCapacity(size int) {
if cap(z.limbs) < size {
newLimbs := make([]Word, len(z.limbs), size)
copy(newLimbs, z.limbs)
z.limbs = newLimbs
}
}
// resizedLimbs returns a new slice of limbs accomodating a number of bits.
//
// This will clear out the end of the slice as necessary.
//
// LEAK: the current number of limbs, and bits
// OK: both are public
func (z *Nat) resizedLimbs(bits int) []Word {
size := limbCount(bits)
z.ensureLimbCapacity(size)
res := z.limbs[:size]
// Make sure that the expansion (if any) is cleared
for i := len(z.limbs); i < size; i++ {
res[i] = 0
}
maskEnd(res, bits)
return res
}
// maskEnd applies the correct bit mask to some limbs
func maskEnd(limbs []Word, bits int) {
if len(limbs) <= 0 {
return
}
limbs[len(limbs)-1] &= limbMask(bits)
}
// unaliasedLimbs returns a set of limbs for z, such that they do not alias those of x
//
// This will create a copy of the limbs, if necessary.
//
// LEAK: the size of z, whether or not z and x are the same Nat
func (z *Nat) unaliasedLimbs(x *Nat) []Word {
res := z.limbs
if z == x {
res = make([]Word, len(z.limbs))
copy(res, z.limbs)
}
return res
}
// trueSize calculates the actual size necessary for representing these limbs
//
// This is the size with leading zeros removed. This leaks the number
// of such zeros, but nothing else.
func trueSize(limbs []Word) int {
// Instead of checking == 0 directly, which may leak the value, we instead
// compare with zero in constant time, and check if that succeeded in a leaky way.
var size int
for size = len(limbs); size > 0 && ctEq(limbs[size-1], 0) == 1; size-- {
}
return size
}
// AnnouncedLen returns the number of bits this number is publicly known to have
func (z *Nat) AnnouncedLen() int {
return z.announced
}
// TrueLen calculates the exact number of bits needed to represent z
//
// This function violates the standard contract around Nats and announced length.
// For most purposes, `AnnouncedLen` should be used instead.
//
// That being said, this function does try to limit its leakage, and should
// only leak the number of leading zero bits in the number.
func (z *Nat) TrueLen() int {
limbSize := trueSize(z.limbs)
size := limbSize * _W
if limbSize > 0 {
size -= leadingZeros(z.limbs[limbSize-1])
}
return size
}
// FillBytes writes out the big endian bytes of a natural number.
//
// This will always write out the full capacity of the number, without
// any kind trimming.
func (z *Nat) FillBytes(buf []byte) []byte {
for i := 0; i < len(buf); i++ {
buf[i] = 0
}
i := len(buf)
// LEAK: Number of limbs
// OK: The number of limbs is public
// LEAK: The addresses touched in the out array
// OK: Every member of out is touched
Outer:
for _, x := range z.limbs {
y := x
for j := 0; j < _S; j++ {
i--
if i < 0 {
break Outer
}
buf[i] = byte(y)
y >>= 8
}
}
return buf
}
// SetBytes interprets a number in big-endian format, stores it in z, and returns z.
//
// The exact length of the buffer must be public information! This length also dictates
// the capacity of the number returned, and thus the resulting timings for operations
// involving that number.
func (z *Nat) SetBytes(buf []byte) *Nat {
z.reduced = nil
z.announced = 8 * len(buf)
z.limbs = z.resizedLimbs(z.announced)
bufI := len(buf) - 1
for i := 0; i < len(z.limbs) && bufI >= 0; i++ {
z.limbs[i] = 0
for shift := 0; shift < _W && bufI >= 0; shift += 8 {
z.limbs[i] |= Word(buf[bufI]) << shift
bufI--
}
}
return z
}
// Bytes creates a slice containing the contents of this Nat, in big endian
//
// This will always fill the output byte slice based on the announced length of this Nat.
func (z *Nat) Bytes() []byte {
length := (z.announced + 7) / 8
out := make([]byte, length)
return z.FillBytes(out)
}
// MarshalBinary implements encoding.BinaryMarshaler.
// Returns the same value as Bytes().
func (i *Nat) MarshalBinary() ([]byte, error) {
return i.Bytes(), nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
// Wraps SetBytes
func (i *Nat) UnmarshalBinary(data []byte) error {
i.SetBytes(data)
return nil
}
// convert a 4 bit value into an ASCII value in constant time
func nibbletoASCII(nibble byte) byte {
w := Word(nibble)
value := ctIfElse(ctGt(w, 9), w-0xA+Word('A'), w+Word('0'))
return byte(value)
}
// convert an ASCII value into a 4 bit value, returning whether or not this value is valid.
func nibbleFromASCII(ascii byte) (byte, Choice) {
w := Word(ascii)
inFirstRange := ctGt(w, Word('0')-1) & (1 ^ ctGt(w, Word('9')))
inSecondRange := ctGt(w, Word('A')-1) & (1 ^ ctGt(w, Word('F')))
valid := inFirstRange | inSecondRange
nibble := ctIfElse(inFirstRange, w-Word('0'), w-Word('A')+0xA)
return byte(nibble), valid
}
// SetHex modifies the value of z to hold a hex string, returning z
//
// The hex string must be in big endian order. If it contains characters
// other than 0..9, A..F, the value of z will be undefined, and an error will
// be returned.
//
// The value of the string shouldn't be leaked, except in the case where the string
// contains invalid characters.
func (z *Nat) SetHex(hex string) (*Nat, error) {
z.reduced = nil
z.announced = 4 * len(hex)
z.limbs = z.resizedLimbs(z.announced)
hexI := len(hex) - 1
for i := 0; i < len(z.limbs) && hexI >= 0; i++ {
z.limbs[i] = 0
for shift := 0; shift < _W && hexI >= 0; shift += 4 {
nibble, valid := nibbleFromASCII(byte(hex[hexI]))
if valid != 1 {
return nil, fmt.Errorf("invalid hex character: %c", hex[hexI])
}
z.limbs[i] |= Word(nibble) << shift
hexI--
}
}
return z, nil
}
// Hex converts this number into a hexadecimal string.
//
// This string will be a multiple of 8 bits.
//
// This shouldn't leak any information about the value of this Nat, only its length.
func (z *Nat) Hex() string {
bytes := z.Bytes()
var builder strings.Builder
for _, b := range bytes {
_ = builder.WriteByte(nibbletoASCII((b >> 4) & 0xF))
_ = builder.WriteByte(nibbletoASCII(b & 0xF))
}
return builder.String()
}
// the number of bytes to print in the string representation before an underscore
const underscoreAfterNBytes = 4
// String will represent this nat as a convenient Hex string
//
// This shouldn't leak any information about the value of this Nat, only its length.
func (z *Nat) String() string {
bytes := z.Bytes()
var builder strings.Builder
_, _ = builder.WriteString("0x")
i := 0
for _, b := range bytes {
if i == underscoreAfterNBytes {
builder.WriteRune('_')
i = 0
}
builder.WriteByte(nibbletoASCII((b >> 4) & 0xF))
builder.WriteByte(nibbletoASCII(b & 0xF))
i += 1
}
return builder.String()
}
// Byte will access the ith byte in this nat, with 0 being the least significant byte.
//
// This will leak the value of i, and panic if i is < 0.
func (z *Nat) Byte(i int) byte {
if i < 0 {
panic("negative byte")
}
limbCount := len(z.limbs)
bytesPerLimb := _W / 8
if i >= bytesPerLimb*limbCount {
return 0
}
return byte(z.limbs[i/bytesPerLimb] >> (8 * (i % bytesPerLimb)))
}
// Big converts a Nat into a big.Int
//
// This will leak information about the true size of z, so caution
// should be exercised when using this method with sensitive values.
func (z *Nat) Big() *big.Int {
res := new(big.Int)
// Unfortunate that there's no good way to handle this
bigLimbs := make([]big.Word, len(z.limbs))
for i := 0; i < len(bigLimbs) && i < len(z.limbs); i++ {
bigLimbs[i] = big.Word(z.limbs[i])
}
res.SetBits(bigLimbs)
return res
}
// SetBig modifies z to contain the value of x
//
// The size parameter is used to pad or truncate z to a certain number of bits.
func (z *Nat) SetBig(x *big.Int, size int) *Nat {
z.announced = size
z.limbs = z.resizedLimbs(size)
bigLimbs := x.Bits()
for i := 0; i < len(z.limbs) && i < len(bigLimbs); i++ {
z.limbs[i] = Word(bigLimbs[i])
}
maskEnd(z.limbs, size)
return z
}
// SetUint64 sets z to x, and returns z
//
// This will have the exact same capacity as a 64 bit number
func (z *Nat) SetUint64(x uint64) *Nat {
z.reduced = nil
z.announced = 64
z.limbs = z.resizedLimbs(z.announced)
for i := 0; i < len(z.limbs); i++ {
z.limbs[i] = Word(x)
x >>= _W
}
return z
}
// Uint64 represents this number as uint64
//
// The behavior of this function is undefined if the announced length of z is > 64.
func (z *Nat) Uint64() uint64 {
var ret uint64
for i := len(z.limbs) - 1; i >= 0; i-- {
ret = (ret << _W) | uint64(z.limbs[i])
}
return ret
}
// SetNat copies the value of x into z
//
// z will have the same announced length as x.
func (z *Nat) SetNat(x *Nat) *Nat {
z.limbs = z.resizedLimbs(x.announced)
copy(z.limbs, x.limbs)
z.reduced = x.reduced
z.announced = x.announced
return z
}
// Clone returns a copy of this value.
//
// This copy can safely be mutated without affecting the original.
func (z *Nat) Clone() *Nat {
return new(Nat).SetNat(z)
}
// Resize resizes z to a certain number of bits, returning z.
func (z *Nat) Resize(cap int) *Nat {
z.limbs = z.resizedLimbs(cap)
z.announced = cap
return z
}
// Modulus represents a natural number used for modular reduction
//
// Unlike with natural numbers, the number of bits need to contain the modulus
// is assumed to be public. Operations are allowed to leak this size, and creating
// a modulus will remove unnecessary zeros.
//
// Operations on a Modulus may leak whether or not a Modulus is even.
type Modulus struct {
nat Nat
// the number of leading zero bits
leading int
// The inverse of the least significant limb, modulo W
m0inv Word
// If true, then this modulus is even
even bool
}
// invertModW calculates x^-1 mod _W
func invertModW(x Word) Word {
y := x
// This is enough for 64 bits, and the extra iteration is not that costly for 32
for i := 0; i < 5; i++ {
y = y * (2 - x*y)
}
return y
}
// precomputeValues calculates the desirable modulus fields in advance
//
// This sets the leading number of bits, leaking the true bit size of m,
// as well as the inverse of the least significant limb (without leaking it).
//
// This will also do integrity checks, namely that the modulus isn't empty or even
func (m *Modulus) precomputeValues() {
announced := m.nat.TrueLen()
m.nat.announced = announced
m.nat.limbs = m.nat.resizedLimbs(announced)
if len(m.nat.limbs) < 1 {
panic("Modulus is empty")
}
m.leading = leadingZeros(m.nat.limbs[len(m.nat.limbs)-1])
// I think checking the bit directly might leak more data than we'd like
m.even = ctEq(m.nat.limbs[0]&1, 0) == 1
// There's no point calculating this if m isn't even, and we can leak evenness
if !m.even {
m.m0inv = invertModW(m.nat.limbs[0])
m.m0inv = -m.m0inv
}
}
// ModulusFromUint64 sets the modulus according to an integer
func ModulusFromUint64(x uint64) *Modulus {
var m Modulus
m.nat.SetUint64(x)
m.precomputeValues()
return &m
}
// ModulusFromBytes creates a new Modulus, converting from big endian bytes
//
// This function will remove leading zeros, thus leaking the true size of the modulus.
// See the documentation for the Modulus type, for more information about this contract.
func ModulusFromBytes(bytes []byte) *Modulus {
var m Modulus
// TODO: You could allocate a smaller buffer to begin with, versus using the Nat method
m.nat.SetBytes(bytes)
m.precomputeValues()
return &m
}
// ModulusFromHex creates a new modulus from a hex string.
//
// The same rules as Nat.SetHex apply.
//
// Additionally, this function will remove leading zeros, leaking the true size of the modulus.
// See the documentation for the Modulus type, for more information about this contract.
func ModulusFromHex(hex string) (*Modulus, error) {
var m Modulus
_, err := m.nat.SetHex(hex)
if err != nil {
return nil, err
}
m.precomputeValues()
return &m, nil
}
// FromNat creates a new Modulus, using the value of a Nat
//
// This will leak the true size of this natural number. Because of this,
// the true size of the number should not be sensitive information. This is
// a stronger requirement than we usually have for Nat.
func ModulusFromNat(nat *Nat) *Modulus {
var m Modulus
m.nat.SetNat(nat)
m.precomputeValues()
return &m
}
// Nat returns the value of this modulus as a Nat.
//
// This will create a copy of this modulus value, so the Nat can be safely
// mutated.
func (m *Modulus) Nat() *Nat {
return new(Nat).SetNat(&m.nat)
}
// Bytes returns the big endian bytes making up the modulus
func (m *Modulus) Bytes() []byte {
return m.nat.Bytes()
}
// MarshalBinary implements encoding.BinaryMarshaler.
func (i *Modulus) MarshalBinary() ([]byte, error) {
return i.nat.Bytes(), nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
func (i *Modulus) UnmarshalBinary(data []byte) error {
i.nat.SetBytes(data)
i.precomputeValues()
return nil
}
// Big returns the value of this Modulus as a big.Int
func (m *Modulus) Big() *big.Int {
return m.nat.Big()
}
// Hex will represent this Modulus as a Hex string.
//
// The hex string will hold a multiple of 8 bits.
//
// This shouldn't leak any information about the value of the modulus, beyond
// the usual leakage around its size.
func (m *Modulus) Hex() string {
return m.nat.Hex()
}
// String will represent this Modulus as a convenient Hex string
//
// This shouldn't leak any information about the value of the modulus, only its length.
func (m *Modulus) String() string {
return m.nat.String()
}
// BitLen returns the exact number of bits used to store this Modulus
//
// Moduli are allowed to leak this value.
func (m *Modulus) BitLen() int {
return m.nat.announced
}
// Cmp compares two moduli, returning results for (>, =, <).
//
// This will not leak information about the value of these relations, or the moduli.
func (m *Modulus) Cmp(n *Modulus) (Choice, Choice, Choice) {
return m.nat.Cmp(&n.nat)
}
// shiftAddInCommon exists to unify behavior between shiftAddIn and shiftAddInGeneric
//
// z, scratch, and m should have the same length.
//
// The two functions differ only in how the calculate a1:a0, and b0.
//
// hi should be what was previously the top limb of z.
//
// a1:a0 and b0 should be the most significant two limbs of z, and single limb of m,
// after shifting to discard leading zeros.
//
// The way these are calculated differs between the two versions of shiftAddIn,
// which is why this function exists.
func shiftAddInCommon(z, scratch, m []Word, hi, a1, a0, b0 Word) (q Word) {
// We want to use a1:a0 / b0 - 1 as our estimate. If rawQ is 0, we should
// use 0 as our estimate. Another edge case when an overflow happens in the quotient.
// It can be shown that this happens when a1 == b0. In this case, we want
// to use the maximum value for q
rawQ, _ := div(a1, a0, b0)
q = ctIfElse(ctEq(a1, b0), ^Word(0), ctIfElse(ctEq(rawQ, 0), 0, rawQ-1))
// This estimate is off by +- 1, so we subtract q * m, and then either add
// or subtract m, based on the result.
c := mulSubVVW(z, m, q)
// If the carry from subtraction is greater than the limb of z we've shifted out,
// then we've underflowed, and need to add in m
under := ctGt(c, hi)
// For us to be too large, we first need to not be too low, as per the previous flag.
// Then, if the lower limbs of z are still larger, or the top limb of z is equal to the carry,
// we can conclude that we're too large, and need to subtract m
stillBigger := cmpGeq(z, m)
over := (1 ^ under) & (stillBigger | (1 ^ ctEq(c, hi)))
addVV(scratch, z, m)
ctCondCopy(under, z, scratch)
q -= Word(under)
subVV(scratch, z, m)
ctCondCopy(over, z, scratch)
q += Word(over)
return
}
// shiftAddIn calculates z = z << _W + x mod m
//
// The length of z and scratch should be len(m)
func shiftAddIn(z, scratch []Word, x Word, m *Modulus) (q Word) {
// Making tests on the exact bit length of m is ok,
// since that's part of the contract for moduli
size := len(m.nat.limbs)
if size == 0 {
return
}
if size == 1 {
// In this case, z:x (/, %) m is exactly what we need to calculate
q, r := div(z[0], x, m.nat.limbs[0])
z[0] = r
return q
}
// The idea is as follows:
//
// We want to shift x into z, and then divide by m. Instead of dividing by
// m, we can get a good estimate, using the top two 2 * _W bits of z, and the
// top _W bits of m. These are stored in a1:a0, and b0 respectively.
// We need to keep around the top word of z, pre-shifting
hi := z[size-1]
a1 := (z[size-1] << m.leading) | (z[size-2] >> (_W - m.leading))
// The actual shift can be performed by moving the limbs of z up, then inserting x
for i := size - 1; i > 0; i-- {
z[i] = z[i-1]
}
z[0] = x
a0 := (z[size-1] << m.leading) | (z[size-2] >> (_W - m.leading))
b0 := (m.nat.limbs[size-1] << m.leading) | (m.nat.limbs[size-2] >> (_W - m.leading))
return shiftAddInCommon(z, scratch, m.nat.limbs, hi, a1, a0, b0)
}
// shiftAddInGeneric is like shiftAddIn, but works with arbitrary m.
//
// See shiftAddIn for what this function is trying to accomplish, and what the
// inputs represent.
//
// The big difference this entails is that z and m may have padding limbs, so
// we have to do a bit more work to recover their significant bits in constant-time.
func shiftAddInGeneric(z, scratch []Word, x Word, m []Word) Word {
size := len(m)
if size == 0 {
return 0
}
if size == 1 {
// In this case, z:x (/, %) m is exactly what we need to calculate
q, r := div(z[0], x, m[0])
z[0] = r
return q
}
// We need to get match the two most significant 2 * _W bits of z with the most significant
// _W bits of m. We also need to eliminate any leading zeros, possibly fetching a
// these bits over multiple limbs. Because of this, we need to scan over both
// arrays, with a window of 3 limbs for z, and 2 limbs for m, until we hit the
// first non-zero limb for either of them. Because z < m, it suffices to check
// for a non-zero limb from m.
var a2, a1, a0, b1, b0 Word
done := Choice(0)
for i := size - 1; i > 1; i-- {
a2 = ctIfElse(done, a2, z[i])
a1 = ctIfElse(done, a1, z[i-1])
a0 = ctIfElse(done, a0, z[i-2])
b1 = ctIfElse(done, b1, m[i])
b0 = ctIfElse(done, b0, m[i-1])
done = 1 ^ ctEq(b1, 0)
}
// We also need to do one more iteration to potentially include x inside of our
// significant bits from z.
a2 = ctIfElse(done, a2, z[1])
a1 = ctIfElse(done, a1, z[0])
a0 = ctIfElse(done, a0, x)
b1 = ctIfElse(done, b1, m[1])
b0 = ctIfElse(done, b0, m[0])
// Now, we need to shift away the leading zeros to get the most significant bits.
// Converting to Word avoids a panic check
l := Word(leadingZeros(b1))
a2 = (a2 << l) | (a1 >> (_W - l))
a1 = (a1 << l) | (a0 >> (_W - l))
b1 = (b1 << l) | (b0 >> (_W - l))
// Another adjustment we need to make before calling the next function is to actually
// insert x inside of z, shifting out hi.
hi := z[len(z)-1]
for i := size - 1; i > 0; i-- {
z[i] = z[i-1]
}
z[0] = x
return shiftAddInCommon(z, scratch, m, hi, a2, a1, b1)
}
// Mod calculates z <- x mod m
//
// The capacity of the resulting number matches the capacity of the modulus.
func (z *Nat) Mod(x *Nat, m *Modulus) *Nat {
if x.reduced == m {
z.SetNat(x)
return z
}
size := len(m.nat.limbs)
xLimbs := x.unaliasedLimbs(z)
z.limbs = z.resizedLimbs(2 * _W * size)
for i := 0; i < len(z.limbs); i++ {
z.limbs[i] = 0
}
// Multiple times in this section:
// LEAK: the length of x
// OK: this is public information
i := len(xLimbs) - 1
// We can inject at least size - 1 limbs while staying under m
// Thus, we start injecting from index size - 2
start := size - 2
// That is, if there are at least that many limbs to choose from
if i < start {
start = i
}
for j := start; j >= 0; j-- {
z.limbs[j] = xLimbs[i]
i--
}
// We shift in the remaining limbs, making sure to reduce modulo M each time
for ; i >= 0; i-- {
shiftAddIn(z.limbs[:size], z.limbs[size:], xLimbs[i], m)
}
z.limbs = z.resizedLimbs(m.nat.announced)
z.announced = m.nat.announced
z.reduced = m
return z
}
// Div calculates z <- x / m, with m a Modulus.
//
// This might seem like an odd signature, but by using a Modulus,
// we can achieve the same speed as the Mod method. This wouldn't be the case for
// an arbitrary Nat.
//
// cap determines the number of bits to keep in the result. If cap < 0, then
// the number of bits will be x.AnnouncedLen() - m.BitLen() + 2
func (z *Nat) Div(x *Nat, m *Modulus, cap int) *Nat {
if cap < 0 {
cap = x.announced - m.nat.announced + 2
}
if len(x.limbs) < len(m.nat.limbs) || x.reduced == m {
z.limbs = z.resizedLimbs(cap)
for i := 0; i < len(z.limbs); i++ {
z.limbs[i] = 0
}
z.announced = cap
z.reduced = nil
return z
}
size := limbCount(m.nat.announced)
xLimbs := x.unaliasedLimbs(z)
// Enough for 2 buffers the size of m, and to store the full quotient
startSize := limbCount(cap)
if startSize < 2*size {
startSize = 2 * size
}
z.limbs = z.resizedLimbs(_W * (startSize + len(xLimbs)))
remainder := z.limbs[:size]
for i := 0; i < len(remainder); i++ {
remainder[i] = 0
}
scratch := z.limbs[size : 2*size]
// Our full quotient, in big endian order.
quotientBE := z.limbs[startSize:]
// We use this to append without actually reallocating. We fill our quotient
// in from 0 upwards.
qI := 0
i := len(xLimbs) - 1
// We can inject at least size - 1 limbs while staying under m
// Thus, we start injecting from index size - 2
start := size - 2
// That is, if there are at least that many limbs to choose from
if i < start {
start = i
}
for j := start; j >= 0; j-- {
remainder[j] = xLimbs[i]
i--
quotientBE[qI] = 0
qI++
}
for ; i >= 0; i-- {
q := shiftAddIn(remainder, scratch, xLimbs[i], m)
quotientBE[qI] = q
qI++
}
z.limbs = z.resizedLimbs(cap)
// First, reverse all the limbs we want, from the last part of the buffer we used.
for i := 0; i < len(z.limbs) && i < len(quotientBE); i++ {
z.limbs[i] = quotientBE[qI-i-1]
}
maskEnd(z.limbs, cap)
z.reduced = nil
z.announced = cap
return z
}
// ModAdd calculates z <- x + y mod m
//
// The capacity of the resulting number matches the capacity of the modulus.
func (z *Nat) ModAdd(x *Nat, y *Nat, m *Modulus) *Nat {
var xModM, yModM Nat
// This is necessary for the correctness of the algorithm, since
// we don't assume that x and y are in range.
// Furthermore, we can now assume that x and y have the same number
// of limbs as m
xModM.Mod(x, m)
yModM.Mod(y, m)
// The only thing we have to resize is z, everything else has m's length
size := limbCount(m.nat.announced)
scratch := z.resizedLimbs(2 * _W * size)
// This might hold some more bits, but masking isn't necessary, since the
// result will be < m.
z.limbs = scratch[:size]
subResult := scratch[size:]
addCarry := addVV(z.limbs, xModM.limbs, yModM.limbs)
subCarry := subVV(subResult, z.limbs, m.nat.limbs)
// Three cases are possible:
//
// addCarry, subCarry = 0 -> subResult
// we didn't overflow our buffer, but our result was big
// enough to subtract m without underflow, so it was larger than m
// addCarry, subCarry = 1 -> subResult
// we overflowed the buffer, and the subtraction of m is correct,
// because our result only looks too small because of the missing carry bit
// addCarry = 0, subCarry = 1 -> addResult
// we didn't overflow our buffer, and the subtraction of m is wrong,
// because our result was already smaller than m
// The other case is impossible, because it would mean we have a result big
// enough to both overflow the addition by at least m. But, we made sure that
// x and y are at most m - 1, so this isn't possible.
selectSub := ctEq(addCarry, subCarry)
ctCondCopy(selectSub, z.limbs[:size], subResult)
z.reduced = m
z.announced = m.nat.announced
return z
}
func (z *Nat) ModSub(x *Nat, y *Nat, m *Modulus) *Nat {
var xModM, yModM Nat
// First reduce x and y mod m
xModM.Mod(x, m)
yModM.Mod(y, m)
size := len(m.nat.limbs)
scratch := z.resizedLimbs(_W * 2 * size)
z.limbs = scratch[:size]
addResult := scratch[size:]
subCarry := subVV(z.limbs, xModM.limbs, yModM.limbs)
underflow := ctEq(subCarry, 1)
addVV(addResult, z.limbs, m.nat.limbs)
ctCondCopy(underflow, z.limbs, addResult)
z.reduced = m
z.announced = m.nat.announced
return z
}
// ModNeg calculates z <- -x mod m
func (z *Nat) ModNeg(x *Nat, m *Modulus) *Nat {
// First reduce x mod m
z.Mod(x, m)
size := len(m.nat.limbs)
scratch := z.resizedLimbs(_W * 2 * size)
z.limbs = scratch[:size]
zero := scratch[size:]
for i := 0; i < len(zero); i++ {
zero[i] = 0
}
borrow := subVV(z.limbs, zero, z.limbs)
underflow := ctEq(Word(borrow), 1)
// Add back M if we underflowed
addVV(zero, z.limbs, m.nat.limbs)
ctCondCopy(underflow, z.limbs, zero)
z.reduced = m
z.announced = m.nat.announced
return z
}
// Add calculates z <- x + y, modulo 2^cap
//
// The capacity is given in bits, and also controls the size of the result.
//
// If cap < 0, the capacity will be max(x.AnnouncedLen(), y.AnnouncedLen()) + 1
func (z *Nat) Add(x *Nat, y *Nat, cap int) *Nat {
if cap < 0 {
cap = x.maxAnnounced(y) + 1
}
xLimbs := x.resizedLimbs(cap)
yLimbs := y.resizedLimbs(cap)
z.limbs = z.resizedLimbs(cap)
addVV(z.limbs, xLimbs, yLimbs)
// Mask off the final bits
z.limbs = z.resizedLimbs(cap)
z.announced = cap
z.reduced = nil
return z
}
// Sub calculates z <- x - y, modulo 2^cap
//
// The capacity is given in bits, and also controls the size of the result.
//
// If cap < 0, the capacity will be max(x.AnnouncedLen(), y.AnnouncedLen())
func (z *Nat) Sub(x *Nat, y *Nat, cap int) *Nat {
if cap < 0 {
cap = x.maxAnnounced(y)
}
xLimbs := x.resizedLimbs(cap)
yLimbs := y.resizedLimbs(cap)
z.limbs = z.resizedLimbs(cap)
subVV(z.limbs, xLimbs, yLimbs)
// Mask off the final bits
z.limbs = z.resizedLimbs(cap)
z.announced = cap
z.reduced = nil
return z
}
// montgomeryRepresentation calculates zR mod m
func montgomeryRepresentation(z []Word, scratch []Word, m *Modulus) {
// Our strategy is to shift by W, n times, each time reducing modulo m
size := len(m.nat.limbs)
// LEAK: the size of the modulus
// OK: this is public
for i := 0; i < size; i++ {
shiftAddIn(z, scratch, 0, m)
}
}
// You might have the urge to replace this with []Word, and use the routines
// that already exist for doing operations. This would be a mistake.
// Go doesn't seem to be able to optimize and inline slice operations nearly as
// well as it can for this little type. Attempts to replace this struct with a
// slice were an order of magnitude slower (as per the exponentiation operation)
type triple struct {
w0 Word
w1 Word
w2 Word
}
func (a *triple) add(b triple) {
w0, c0 := bits.Add(uint(a.w0), uint(b.w0), 0)
w1, c1 := bits.Add(uint(a.w1), uint(b.w1), c0)
w2, _ := bits.Add(uint(a.w2), uint(b.w2), c1)
a.w0 = Word(w0)
a.w1 = Word(w1)
a.w2 = Word(w2)
}
func tripleFromMul(a Word, b Word) triple {
// You might be tempted to use mulWW here, but for some reason, Go cannot
// figure out how to inline that assembly routine, but using bits.Mul directly
// gets inlined by the compiler into effectively the same assembly.
//
// Beats me.
w1, w0 := bits.Mul(uint(a), uint(b))
return triple{w0: Word(w0), w1: Word(w1), w2: 0}
}
// montgomeryMul performs z <- xy / R mod m
//
// LEAK: the size of the modulus
//
// out, x, y must have the same length as the modulus, and be reduced already.
//
// out can alias x and y, but not scratch
func montgomeryMul(x []Word, y []Word, out []Word, scratch []Word, m *Modulus) {
size := len(m.nat.limbs)
for i := 0; i < size; i++ {
scratch[i] = 0
}
dh := Word(0)
for i := 0; i < size; i++ {
f := (scratch[0] + x[i]*y[0]) * m.m0inv
var c triple
for j := 0; j < size; j++ {
z := triple{w0: scratch[j], w1: 0, w2: 0}
z.add(tripleFromMul(x[i], y[j]))
z.add(tripleFromMul(f, m.nat.limbs[j]))
z.add(c)
if j > 0 {
scratch[j-1] = z.w0
}
c.w0 = z.w1
c.w1 = z.w2
}
z := triple{w0: dh, w1: 0, w2: 0}
z.add(c)
scratch[size-1] = z.w0
dh = z.w1
}
c := subVV(out, scratch, m.nat.limbs)
ctCondCopy(1^ctEq(dh, c), out, scratch)
}
// ModMul calculates z <- x * y mod m
//
// The capacity of the resulting number matches the capacity of the modulus
func (z *Nat) ModMul(x *Nat, y *Nat, m *Modulus) *Nat {
xModM := new(Nat).Mod(x, m)
yModM := new(Nat).Mod(y, m)
bitLen := m.BitLen()
z.Mul(xModM, yModM, 2*bitLen)
return z.Mod(z, m)
}
// Mul calculates z <- x * y, modulo 2^cap
//
// The capacity is given in bits, and also controls the size of the result.
//
// If cap < 0, the capacity will be x.AnnouncedLen() + y.AnnouncedLen()
func (z *Nat) Mul(x *Nat, y *Nat, cap int) *Nat {
if cap < 0 {
cap = x.announced + y.announced
}
size := limbCount(cap)
// Since we neex to set z to zero, we have no choice to use a new buffer,
// because we allow z to alias either of the arguments
zLimbs := make([]Word, size)
xLimbs := x.resizedLimbs(cap)
yLimbs := y.resizedLimbs(cap)
// LEAK: limbCount
// OK: the capacity is public, or should be
for i := 0; i < size; i++ {
addMulVVW(zLimbs[i:], xLimbs, yLimbs[i])
}
z.limbs = zLimbs
z.limbs = z.resizedLimbs(cap)
z.announced = cap
z.reduced = nil
return z
}
// Rsh calculates z <- x >> shift, producing a certain number of bits
//
// This method will leak the value of shift.
//
// If cap < 0, the number of bits will be x.AnnouncedLen() - shift.
func (z *Nat) Rsh(x *Nat, shift uint, cap int) *Nat {
if cap < 0 {
cap = x.announced - int(shift)
if cap < 0 {
cap = 0
}
}
zLimbs := z.resizedLimbs(x.announced)
xLimbs := x.resizedLimbs(x.announced)
singleShift := shift % _W
shrVU(zLimbs, xLimbs, singleShift)
limbShifts := (shift - singleShift) / _W
if limbShifts > 0 {
i := 0
for ; i+int(limbShifts) < len(zLimbs); i++ {
zLimbs[i] = zLimbs[i+int(limbShifts)]
}
for ; i < len(zLimbs); i++ {
zLimbs[i] = 0
}
}
z.limbs = zLimbs
z.limbs = z.resizedLimbs(cap)
z.announced = cap
z.reduced = nil
return z
}
// Lsh calculates z <- x << shift, producing a certain number of bits
//
// This method will leak the value of shift.
//
// If cap < 0, the number of bits will be x.AnnouncedLen() + shift.
func (z *Nat) Lsh(x *Nat, shift uint, cap int) *Nat {
if cap < 0 {
cap = x.announced + int(shift)
}
zLimbs := z.resizedLimbs(cap)
xLimbs := x.resizedLimbs(cap)
singleShift := shift % _W
shlVU(zLimbs, xLimbs, singleShift)
limbShifts := (shift - singleShift) / _W
if limbShifts > 0 {
i := len(zLimbs) - 1
for ; i-int(limbShifts) >= 0; i-- {
zLimbs[i] = zLimbs[i-int(limbShifts)]
}
for ; i >= 0; i-- {
zLimbs[i] = 0
}
}
z.limbs = zLimbs
z.announced = cap
z.reduced = nil
return z
}
func (z *Nat) expOdd(x *Nat, y *Nat, m *Modulus) *Nat {
size := len(m.nat.limbs)
xModM := new(Nat).Mod(x, m)
yLimbs := y.unaliasedLimbs(z)
scratch := z.resizedLimbs(_W * 18 * size)
scratch1 := scratch[16*size : 17*size]
scratch2 := scratch[17*size:]
z.limbs = scratch[:size]
for i := 0; i < size; i++ {
z.limbs[i] = 0
}
z.limbs[0] = 1
montgomeryRepresentation(z.limbs, scratch1, m)
x1 := scratch[size : 2*size]
copy(x1, xModM.limbs)
montgomeryRepresentation(scratch[size:2*size], scratch1, m)
for i := 2; i < 16; i++ {
ximinus1 := scratch[(i-1)*size : i*size]
xi := scratch[i*size : (i+1)*size]
montgomeryMul(ximinus1, x1, xi, scratch1, m)
}
// LEAK: y's length
// OK: this should be public
for i := len(yLimbs) - 1; i >= 0; i-- {
yi := yLimbs[i]
for j := _W - 4; j >= 0; j -= 4 {
montgomeryMul(z.limbs, z.limbs, z.limbs, scratch1, m)
montgomeryMul(z.limbs, z.limbs, z.limbs, scratch1, m)
montgomeryMul(z.limbs, z.limbs, z.limbs, scratch1, m)
montgomeryMul(z.limbs, z.limbs, z.limbs, scratch1, m)
window := (yi >> j) & 0b1111
for i := 1; i < 16; i++ {
xToI := scratch[i*size : (i+1)*size]
ctCondCopy(ctEq(window, Word(i)), scratch1, xToI)
}
montgomeryMul(z.limbs, scratch1, scratch1, scratch2, m)
ctCondCopy(1^ctEq(window, 0), z.limbs, scratch1)
}
}
for i := 0; i < size; i++ {
scratch2[i] = 0
}
scratch2[0] = 1
montgomeryMul(z.limbs, scratch2, z.limbs, scratch1, m)
z.reduced = m
z.announced = m.nat.announced
return z
}
func (z *Nat) expEven(x *Nat, y *Nat, m *Modulus) *Nat {
xModM := new(Nat).Mod(x, m)
yLimbs := y.unaliasedLimbs(z)
scratch := new(Nat)
// LEAK: y's length
// OK: this should be public
for i := len(yLimbs) - 1; i >= 0; i-- {
yi := yLimbs[i]
for j := _W; j >= 0; j-- {
z.ModMul(z, z, m)
sel := Choice((yi >> j) & 1)
scratch.ModMul(z, xModM, m)
ctCondCopy(sel, z.limbs, scratch.limbs)
}
}
return z
}
// Exp calculates z <- x^y mod m
//
// The capacity of the resulting number matches the capacity of the modulus
func (z *Nat) Exp(x *Nat, y *Nat, m *Modulus) *Nat {
if m.even {
return z.expEven(x, y, m)
} else {
return z.expOdd(x, y, m)
}
}
// cmpEq compares two limbs (same size) returning 1 if x >= y, and 0 otherwise
func cmpEq(x []Word, y []Word) Choice {
res := Choice(1)
for i := 0; i < len(x) && i < len(y); i++ {
res &= ctEq(x[i], y[i])
}
return res
}
// cmpGeq compares two limbs (same size) returning 1 if x >= y, and 0 otherwise
func cmpGeq(x []Word, y []Word) Choice {
var c uint
for i := 0; i < len(x) && i < len(y); i++ {
_, c = bits.Sub(uint(x[i]), uint(y[i]), c)
}
return 1 ^ Choice(c)
}
// cmpZero checks if a slice is equal to zero, in constant time
//
// LEAK: the length of a
func cmpZero(a []Word) Choice {
var v Word
for i := 0; i < len(a); i++ {
v |= a[i]
}
return ctEq(v, 0)
}
// Cmp compares two natural numbers, returning results for (>, =, <) in that order.
//
// Because these relations are mutually exclusive, exactly one of these values
// will be true.
//
// This function doesn't leak any information about the values involved, only
// their announced lengths.
func (z *Nat) Cmp(x *Nat) (Choice, Choice, Choice) {
// Rough Idea: Resize both slices to the maximum length, then compare
// using that length
maxBits := z.maxAnnounced(x)
zLimbs := z.resizedLimbs(maxBits)
xLimbs := x.resizedLimbs(maxBits)
eq := Choice(1)
geq := Choice(1)
for i := 0; i < len(zLimbs) && i < len(xLimbs); i++ {
eq_at_i := ctEq(zLimbs[i], xLimbs[i])
eq &= eq_at_i
geq = (eq_at_i & geq) | ((1 ^ eq_at_i) & ctGt(zLimbs[i], xLimbs[i]))
}
if (eq & (1 ^ geq)) == 1 {
panic("eq but not geq")
}
return geq & (1 ^ eq), eq, 1 ^ geq
}
// CmpMod compares this natural number with a modulus, returning results for (>, =, <)
//
// This doesn't leak anything about the values of the numbers, only their lengths.
func (z *Nat) CmpMod(m *Modulus) (Choice, Choice, Choice) {
return z.Cmp(&m.nat)
}
// Eq checks if z = y.
//
// This is equivalent to looking at the second choice returned by Cmp.
// But, since looking at equality is so common, this function is provided
// as an extra utility.
func (z *Nat) Eq(y *Nat) Choice {
_, eq, _ := z.Cmp(y)
return eq
}
// EqZero compares z to 0.
//
// This is more efficient that calling Eq between this Nat and a zero Nat.
func (z *Nat) EqZero() Choice {
return cmpZero(z.limbs)
}
// mixSigned calculates a <- alpha * a + beta * b, returning whether the result is negative.
//
// alpha and beta are signed integers, but whose absolute value is < 2^(_W / 2).
// They're represented in two's complement.
//
// a and b both have an extra limb. We use the extra limb of a to store the full
// result.
func mixSigned(a, b []Word, alpha, beta Word) Choice {
// Get the sign and absolute value for alpha
alphaNeg := alpha >> (_W - 1)
alpha = (alpha ^ -alphaNeg) + alphaNeg
// Get the sign and absolute value for beta
betaNeg := beta >> (_W - 1)
beta = (beta ^ -betaNeg) + betaNeg
// Our strategy for representing the result is to use a two's complement
// representation alongside an extra limb.
// Multiply a by alpha
var cc Word
for i := 0; i < len(a)-1; i++ {
cc, a[i] = mulAddWWW_g(alpha, a[i], cc)
}
a[len(a)-1] = cc
// Correct for sign
negateTwos(Choice(alphaNeg), a)
// We want to do the same for b, and then add it to a, but without
// creating a temporary array
var mulCarry, negCarry, addCarry, si Word
mulCarry, si = mulAddWWW_g(beta, b[0], 0)
si, negCarry = add(si^-betaNeg, betaNeg, 0)
a[0], addCarry = add(a[0], si, 0)
for i := 1; i < len(b)-1; i++ {
mulCarry, si = mulAddWWW_g(beta, b[i], mulCarry)
si, negCarry = add(si^-betaNeg, 0, negCarry)
a[i], addCarry = add(a[i], si, addCarry)
}
si, _ = add(mulCarry^-betaNeg, 0, negCarry)
a[len(a)-1], _ = add(a[len(a)-1], si, addCarry)
outNeg := Choice(a[len(a)-1] >> (_W - 1))
negateTwos(outNeg, a)
return outNeg
}
// topLimbs finds the most significant _W bits of a and b
//
// This function assumes that a and b have the same length.
//
// By this, we mean aligning a and b, and then reading down _W bits starting
// from the first bit that a or b have set.
func topLimbs(a, b []Word) (Word, Word) {
// explicitly checking this avoids indexing checks later too
if len(a) != len(b) {
panic("topLimbs: mismatched arguments")
}
// We lookup pairs of elements from top to bottom, until a1 or b1 != 0
var a1, a0, b1, b0 Word
done := Choice(0)
for i := len(a) - 1; i > 0; i-- {
a1 = ctIfElse(done, a1, a[i])
a0 = ctIfElse(done, a0, a[i-1])
b1 = ctIfElse(done, b1, b[i])
b0 = ctIfElse(done, b0, b[i-1])
done = 1 ^ ctEq(a1|b1, 0)
}
// Now, we look at the leading zeros to make sure that we're looking at the top
// bits completely.
// Converting to Word avoids a panic check
l := Word(leadingZeros(a1 | b1))
return (a1 << l) | (a0 >> (_W - l)), (b1 << l) | (b0 >> (_W - l))
}
// invert calculates and returns v s.t. vx = 1 mod m, and a flag indicating success.
//
// This function assumes that m is and odd number, but doesn't assume
// that m is truncated to its full size.
//
// announced should be the number of significant bits in m.
//
// x should already be reduced modulo m.
//
// m0inv should be -invertModW(m[0]), which might have been precomputed in some
// cases.
func (z *Nat) invert(announced int, x []Word, m []Word, m0inv Word) Choice {
// This function follows Thomas Pornin's optimized GCD method:
// https://eprint.iacr.org/2020/972
if len(x) != len(m) {
panic("invert: mismatched arguments")
}
size := len(m)
// We need 4 normal buffers, and one scratch buffer.
// We make each of them have an extra limb, because our updates produce an extra
// _W / 2 bits or so, before shifting, or modular reduction, and it's convenient
// to do these "large" updates in place.
z.limbs = z.resizedLimbs(_W * 5 * (size + 1))
// v = 0, u = 1, a = x, b = m
v := z.limbs[:size+1]
u := z.limbs[size+1 : 2*(size+1)]
for i := 0; i < size; i++ {
u[i] = 0
v[i] = 0
}
u[0] = 1
a := z.limbs[3*(size+1) : 4*(size+1)]
copy(a, x)
b := z.limbs[2*(size+1) : 3*(size+1)]
copy(b, m)
scratch := z.limbs[4*(size+1):]
// k is half of our limb size
//
// We do k - 1 inner iterations inside our loop.
const k = _W >> 1
// kMask allows us to keep only this half of a limb
const kMask = (1 << k) - 1
// iterMask allows us to mask off first (k - 1) bits, which is useful, since
// that's how many inner iterations we have.
const iterMask = Word((1 << (k - 1)) - 1)
// The minimum number of iterations is 2 * announced - 1. So, we calculate
// the ceiling of this quantity divided by (k - 1), since that's the number
// of iterations we do inside the inner loop
iterations := ((2*announced - 1) + k - 2) / (k - 1)
for i := 0; i < iterations; i++ {
// The core idea is to use an approximation of a and b to calculate update
// factors. We want to use the low k - 1 bits, combined with the high k + 1 bits.
// This is because the low k - 1 bits suffice to give us odd / even information
// for our k - 1 iterations, and the remaining high bits allow us to check
// a < b as well.
aBar := a[0]
bBar := b[0]
if size > 1 {
aTop, bTop := topLimbs(a[:size], b[:size])
aBar = (iterMask & aBar) | (^iterMask & aTop)
bBar = (iterMask & bBar) | (^iterMask & bTop)
}
// We store two factors in a single register, to make the inner loop faster.
//
// fg = f + (2^(k-1) - 1) + 2^k(g + (2^(k-1) - 1))
//
// The reason we add in 2^(k-1) - 1, is so that the result in each half
// doesn't go negative. We then subtract this factor away when extracting
// the coefficients.
// This factor needs to be added when we subtract one double register from
// another, and vice versa.
const coefficientAdjust = iterMask * ((1 << k) + 1)
fg0 := Word(1) + coefficientAdjust
fg1 := Word(1<<k) + coefficientAdjust
for j := 0; j < k-1; j++ {
// Note: inlining the ctIfElse's produces worse assembly, for some reason;
// there's a lot more register spilling.
acp := aBar
bcp := bBar
fg0cp := fg0
fg1cp := fg1
_, carry := bits.Sub(uint(aBar), uint(bBar), 0)
aSmaller := Choice(carry)
aBar = ctIfElse(aSmaller, bcp, aBar)
bBar = ctIfElse(aSmaller, acp, bBar)
fg0 = ctIfElse(aSmaller, fg1cp, fg0)
fg1 = ctIfElse(aSmaller, fg0cp, fg1)
aBar -= bBar
fg0 -= fg1
fg0 += coefficientAdjust
aOdd := Choice(acp & 1)
aBar = ctIfElse(aOdd, aBar, acp)
bBar = ctIfElse(aOdd, bBar, bcp)
fg0 = ctIfElse(aOdd, fg0, fg0cp)
fg1 = ctIfElse(aOdd, fg1, fg1cp)
aBar >>= 1
fg1 += fg1
fg1 -= coefficientAdjust
}
// Extract out the actual coefficients, as per the previous discussion.
f0 := (fg0 & kMask) - iterMask
g0 := (fg0 >> k) - iterMask
f1 := (fg1 & kMask) - iterMask
g1 := (fg1 >> k) - iterMask
// a, b <- (f0 * a + g0 * b), (f1 * a + g1 * b)
copy(scratch, a)
aNeg := Word(mixSigned(a, b, f0, g0))
bNeg := Word(mixSigned(b, scratch, g1, f1))
// This will always clear the low k - 1 bits, so we shift those away
shrVU(a, a, k-1)
shrVU(b, b, k-1)
// The result may have been negative, in which case we need to negate
// the coefficients for the updates to u and v.
f0 = (f0 ^ -aNeg) + aNeg
g0 = (g0 ^ -aNeg) + aNeg
f1 = (f1 ^ -bNeg) + bNeg
g1 = (g1 ^ -bNeg) + bNeg
// u, v <- (f0 * u + g0 * v), (f1 * u + g1 * v)
copy(scratch, u)
uNeg := mixSigned(u, v, f0, g0)
vNeg := mixSigned(v, scratch, g1, f1)
// Now, reduce u and v mod m, making sure to conditionally negate the result.
u0 := u[0]
copy(u, u[1:])
shiftAddInGeneric(u[:size], scratch[:size], u0, m)
subVV(scratch[:size], m, u[:size])
ctCondCopy(uNeg&(1^cmpZero(u)), u[:size], scratch[:size])
v0 := v[0]
copy(v, v[1:])
shiftAddInGeneric(v[:size], scratch[:size], v0, m)
subVV(scratch[:size], m, v[:size])
ctCondCopy(vNeg&(1^cmpZero(v)), v[:size], scratch[:size])
}
// v now contains our inverse, multiplied by 2^(iterations). We need to correct
// this by dividing by 2. We can use the same trick as in montgomery multiplication,
// adding the correct multiple of m to clear the low bits, and then shifting
totalIterations := iterations * (k - 1)
// First, we try and do _W / 2 bits at a time. This is a convenient amount,
// because then the coefficient only occupies a single limb.
for i := 0; i < totalIterations/k; i++ {
v[size] = addMulVVW(v[:size], m, (m0inv*v[0])&kMask)
shrVU(v, v, k)
}
// If there are any iterations remaining, we can take care of them by clearing
// a smaller number of bits.
remaining := totalIterations % k
if remaining > 0 {
lastMask := Word((1 << remaining) - 1)
v[size] = addMulVVW(v[:size], m, (m0inv*v[0])&lastMask)
shrVU(v, v, uint(remaining))
}
z.Resize(announced)
// Inversion succeeded if b, which contains gcd(x, m), is 1.
return cmpZero(b[1:]) & ctEq(1, b[0])
}
// Coprime returns 1 if gcd(x, y) == 1, and 0 otherwise
func (x *Nat) Coprime(y *Nat) Choice {
maxBits := x.maxAnnounced(y)
size := limbCount(maxBits)
if size == 0 {
// technically the result should be 1 since 0 is not a divisor,
// but we expect 0 when both arguments are equal.
return 0
}
a := make([]Word, size)
copy(a, x.limbs)
b := make([]Word, size)
copy(b, y.limbs)
// Our gcd(a, b) routine requires b to be odd, and will return garbage otherwise.
aOdd := Choice(a[0] & 1)
ctCondSwap(aOdd, a, b)
scratch := new(Nat)
bOdd := Choice(b[0] & 1)
// We make b odd so that our calculations aren't messed up, but this doesn't affect
// our result
b[0] |= 1
invertible := scratch.invert(maxBits, a, b, -invertModW(b[0]))
// If at least one of a or b is odd, then our GCD calculation will have been correct,
// otherwise, both are even, so we want to return false anyways.
return (aOdd | bOdd) & invertible
}
// IsUnit checks if x is a unit, i.e. invertible, mod m.
//
// This so happens to be when gcd(x, m) == 1.
func (x *Nat) IsUnit(m *Modulus) Choice {
return x.Coprime(&m.nat)
}
// modInverse calculates the inverse of a reduced x modulo m
//
// This assumes that m is an odd number, but not that it's truncated
// to its true size. This routine will only leak the announced sizes of
// x and m.
//
// We also assume that x is already reduced modulo m
func (z *Nat) modInverse(x *Nat, m *Nat, m0inv Word) *Nat {
// Make sure that z doesn't alias either of m or x
xLimbs := x.unaliasedLimbs(z)
mLimbs := m.unaliasedLimbs(z)
z.invert(m.announced, xLimbs, mLimbs, m0inv)
return z
}
// ModInverse calculates z <- x^-1 mod m
//
// This will produce nonsense if the modulus is even.
//
// The capacity of the resulting number matches the capacity of the modulus
func (z *Nat) ModInverse(x *Nat, m *Modulus) *Nat {
z.Mod(x, m)
if m.even {
z.modInverseEven(x, m)
} else {
z.modInverse(z, &m.nat, m.m0inv)
}
z.reduced = m
return z
}
// divDouble divides x by d, outputtting the quotient in out, and a remainder
//
// This routine assumes nothing about the padding of either of its inputs, and
// leaks nothing beyond their announced length.
//
// If out is not empty, it's assumed that x has at most twice the bit length of d,
// and the quotient can thus fit in a slice the length of d, which out is assumed to be.
//
// If out is nil, no quotient is produced, but the remainder is still calculated.
// This remainder will be correct regardless of the size difference between x and d.
func divDouble(x []Word, d []Word, out []Word) []Word {
size := len(d)
r := make([]Word, size)
scratch := make([]Word, size)
// We use free injection, like in Mod
i := len(x) - 1
// We can inject at least size - 1 limbs while staying under m
// Thus, we start injecting from index size - 2
start := size - 2
// That is, if there are at least that many limbs to choose from
if i < start {
start = i
}
for j := start; j >= 0; j-- {
r[j] = x[i]
i--
}
for ; i >= 0; i-- {
oi := shiftAddInGeneric(r, scratch, x[i], d)
// Hopefully the branch predictor can make these checks not too expensive,
// otherwise we'll have to duplicate the routine
if out != nil {
out[i] = oi
}
}
return r
}
// ModInverseEven calculates the modular inverse of x, mod m
//
// This routine will work even if m is an even number, unlike ModInverse.
// Furthermore, it doesn't require the modulus to be truncated to its true size, and
// will only leak information about the public sizes of its inputs. It is slower
// than the standard routine though.
//
// This function assumes that x has an inverse modulo m, naturally
func (z *Nat) modInverseEven(x *Nat, m *Modulus) *Nat {
if x.announced <= 0 {
return z.Resize(0)
}
// Idea:
//
// You want to find Z such that ZX = 1 mod M. The problem is
// that the usual routine assumes that m is odd. In this case m is even.
// For X to be invertible, we need it to be odd. We can thus invert M mod X,
// finding an A satisfying AM = 1 mod X. This means that AM = 1 + KX, for some
// positive integer K. Modulo M, this entails that KX = -1 mod M, so -K provides
// us with an inverse for X.
//
// To find K, we can calculate (AM - 1) / X, and then subtract this from M, to get our inverse.
size := len(m.nat.limbs)
// We want to invert m modulo x, so we first calculate the reduced version, before inverting
var newZ Nat
newZ.limbs = divDouble(m.nat.limbs, x.limbs, nil)
newZ.modInverse(&newZ, x, -invertModW(x.limbs[0]))
inverseZero := cmpZero(newZ.limbs)
newZ.Mul(&newZ, &m.nat, 2*size*_W)
newZ.limbs = newZ.resizedLimbs(_W * 2 * size)
subVW(newZ.limbs, newZ.limbs, 1)
divDouble(newZ.limbs, x.limbs, newZ.limbs)
// The result fits on a single half of newZ, but we need to subtract it from m.
// We can use the other half of newZ, and then copy it back over if we need to keep it
subVV(newZ.limbs[size:], m.nat.limbs, newZ.limbs[:size])
// If the inverse was zero, then x was 1, and so we should return 1.
// We go ahead and prepare this result, but expect to copy over the subtraction
// we just calculated soon over, in the usual case.
newZ.limbs[0] = 1
for i := 1; i < size; i++ {
newZ.limbs[i] = 0
}
ctCondCopy(1^inverseZero, newZ.limbs[:size], newZ.limbs[size:])
z.limbs = newZ.limbs
z.Resize(m.nat.announced)
return z
}
// modSqrt3Mod4 sets z <- sqrt(x) mod p, when p is a prime with p = 3 mod 4
func (z *Nat) modSqrt3Mod4(x *Nat, p *Modulus) *Nat {
// In this case, we can do x^(p + 1) / 4
e := new(Nat).SetNat(&p.nat)
carry := addVW(e.limbs, e.limbs, 1)
shrVU(e.limbs, e.limbs, 2)
e.limbs[len(e.limbs)-1] |= (carry << (_W - 2))
return z.Exp(x, e, p)
}
// tonelliShanks sets z <- sqrt(x) mod p, for any prime modulus
func (z *Nat) tonelliShanks(x *Nat, p *Modulus) *Nat {
// c.f. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09#appendix-G.4
scratch := new(Nat)
x = new(Nat).SetNat(x)
one := new(Nat).SetUint64(1)
trailingZeros := 1
reducedPminusOne := new(Nat).Sub(&p.nat, one, p.BitLen())
// In this case, p must have been 1, so sqrt(x) mod p is 0. Explicitly checking
// this avoids an infinite loop when trying to remove the least significant zeros.
// Checking this value is fine, since ModSqrt is explicitly allowed to branch
// on the value of the modulus.
if reducedPminusOne.EqZero() == 1 {
return z.SetUint64(0)
}
shrVU(reducedPminusOne.limbs, reducedPminusOne.limbs, 1)
nonSquare := new(Nat).SetUint64(2)
for scratch.Exp(nonSquare, reducedPminusOne, p).Eq(one) == 1 {
nonSquare.Add(nonSquare, one, p.BitLen())
}
for reducedPminusOne.limbs[0]&1 == 0 {
trailingZeros += 1
shrVU(reducedPminusOne.limbs, reducedPminusOne.limbs, 1)
}
reducedQminusOne := new(Nat).Sub(reducedPminusOne, one, p.BitLen())
shrVU(reducedQminusOne.limbs, reducedQminusOne.limbs, 1)
c := new(Nat).Exp(nonSquare, reducedPminusOne, p)
z.Exp(x, reducedQminusOne, p)
t := new(Nat).ModMul(z, z, p)
t.ModMul(t, x, p)
z.ModMul(z, x, p)
b := new(Nat).SetNat(t)
one.limbs = one.resizedLimbs(len(b.limbs))
for i := trailingZeros; i > 1; i-- {
for j := 1; j < i-1; j++ {
b.ModMul(b, b, p)
}
sel := 1 ^ cmpEq(b.limbs, one.limbs)
scratch.ModMul(z, c, p)
ctCondCopy(sel, z.limbs, scratch.limbs)
c.ModMul(c, c, p)
scratch.ModMul(t, c, p)
ctCondCopy(sel, t.limbs, scratch.limbs)
b.SetNat(t)
}
z.reduced = p
return z
}
// ModSqrt calculates the square root of x modulo p
//
// p must be an odd prime number, and x must actually have a square root
// modulo p. The result is undefined if these conditions aren't satisfied
//
// This function will leak information about the value of p. This isn't intended
// to be used in situations where the modulus isn't publicly known.
func (z *Nat) ModSqrt(x *Nat, p *Modulus) *Nat {
if len(p.nat.limbs) == 0 {
panic("Can't take square root mod 0")
}
if p.nat.limbs[0]&1 == 0 {
panic("Can't take square root mod an even number")
}
if p.nat.limbs[0]&0b11 == 0b11 {
return z.modSqrt3Mod4(x, p)
}
return z.tonelliShanks(x, p)
}
|