File: decode.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (508 lines) | stat: -rw-r--r-- 17,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// Copyright 2024 The CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package toml converts TOML to and from CUE.
//
// WARNING: THIS PACKAGE IS EXPERIMENTAL.
// ITS API MAY CHANGE AT ANY TIME.
package toml

import (
	"fmt"
	"io"
	"strconv"
	"strings"
	"time"

	toml "github.com/pelletier/go-toml/v2/unstable"

	"cuelang.org/go/cue/ast"
	"cuelang.org/go/cue/errors"
	"cuelang.org/go/cue/literal"
	"cuelang.org/go/cue/token"
)

// TODO(mvdan): schema and decode options

// NewDecoder creates a decoder from a stream of TOML input.
func NewDecoder(filename string, r io.Reader) *Decoder {
	// Note that we don't consume the reader here,
	// as there's no need, and we can't return an error either.
	return &Decoder{r: r, filename: filename, seenTableKeys: make(map[string]bool)}
}

// Decoder implements the decoding state.
//
// Note that TOML files and streams never decode multiple CUE nodes;
// subsequent calls to [Decoder.Decode] may return [io.EOF].
type Decoder struct {
	r io.Reader

	filename string

	decoded bool // whether [Decoder.Decoded] has been called already
	parser  toml.Parser

	// seenTableKeys tracks which rooted keys we have already decoded as tables,
	// as duplicate table keys in TOML are not allowed.
	seenTableKeys map[rootedKey]bool

	// topFile is the top-level CUE file we are decoding into.
	// TODO(mvdan): make an *ast.File once the decoder returns ast.Node rather than ast.Expr.
	topFile *ast.StructLit

	// tokenFile is used to create positions which can be used for error values and syntax tree nodes.
	tokenFile *token.File

	// openTableArrays keeps track of all the declared table arrays so that
	// later headers can append a new table array element, or add a field
	// to the last element in a table array.
	//
	// TODO(mvdan): an unsorted slice means we do two linear searches per header key.
	// For N distinct `[[keys]]`, this means a decoding runtime of O(2*N*N).
	// Consider either sorting this array so we can do a binary search for O(N*log2(N)),
	// or perhaps a tree, although for a nesting level D, that could cause O(N*D),
	// and a tree would use more slices and so more allocations.
	//
	// Note that a map is not a good option either, because even though it makes
	// exact lookups cheap, prefix matches are still linear and relatively slow.
	// A sorted slice allows both mechanisms to use a form of binary search.
	openTableArrays []openTableArray

	// currentTableKey is the rooted key for the current table where the following
	// TOML `key = value` lines will be inserted.
	currentTableKey rootedKey

	// currentTable is the CUE struct literal for currentTableKey.
	// It is nil before the first [header] or [[header]],
	// in which case any key-values are inserted in topFile.
	currentTable *ast.StructLit
}

// rootedKey is a dot-separated path from the root of the TOML document.
// The string elements in between the dots may be quoted to avoid ambiguity.
// For the time being, this is just an alias for the sake of documentation.
//
// A path into an array element is like "arr.3",
// which looks very similar to a table's "tbl.key",
// particularly since a table key can be any string.
// However, we just need these keys to detect duplicates,
// and a path cannot be both an array and table, so it's OK.
type rootedKey = string

// openTableArray records information about a declared table array.
type openTableArray struct {
	rkey      rootedKey
	level     int // the level of nesting, 1 or higher, e.g. 2 for key="foo.bar"
	list      *ast.ListLit
	lastTable *ast.StructLit
}

// TODO(mvdan): support decoding comments

// Decode parses the input stream as TOML and converts it to a CUE [*ast.File].
// Because TOML files only contain a single top-level expression,
// subsequent calls to this method may return [io.EOF].
func (d *Decoder) Decode() (ast.Expr, error) {
	if d.decoded {
		return nil, io.EOF
	}
	d.decoded = true
	// TODO(mvdan): unfortunately go-toml does not support streaming as of v2.2.2.
	data, err := io.ReadAll(d.r)
	if err != nil {
		return nil, err
	}
	d.tokenFile = token.NewFile(d.filename, 0, len(data))
	d.tokenFile.SetLinesForContent(data)
	d.parser.Reset(data)
	// Note that if the input is empty the result will be the same
	// as for an empty table: an empty struct.
	// The TOML spec and other decoders also work this way.
	d.topFile = &ast.StructLit{}
	for d.parser.NextExpression() {
		if err := d.nextRootNode(d.parser.Expression()); err != nil {
			return nil, err
		}
	}
	if err := d.parser.Error(); err != nil {
		if err, ok := err.(*toml.ParserError); ok {
			shape := d.parser.Shape(d.parser.Range(err.Highlight))
			return nil, d.posErrf(shape.Start, "%s", err.Message)
		}
		return nil, err
	}
	return d.topFile, nil
}

func (d *Decoder) shape(tnode *toml.Node) toml.Shape {
	if tnode.Raw.Length == 0 {
		// Otherwise the Shape method call below happily returns a position like 1:1,
		// which is worse than no position information as it confuses the user.
		panic("Decoder.nodePos was given an empty toml.Node as position")
	}
	return d.parser.Shape(tnode.Raw)
}

func (d *Decoder) nodeErrf(tnode *toml.Node, format string, args ...any) error {
	return d.posErrf(d.shape(tnode).Start, format, args...)
}

func (d *Decoder) posErrf(pos toml.Position, format string, args ...any) error {
	return errors.Newf(d.tokenFile.Pos(pos.Offset, token.NoRelPos), format, args...)
}

// nextRootNode is called for every top-level expression from the TOML parser.
//
// This method does not return a syntax tree node directly,
// because some kinds of top-level expressions like comments and table headers
// require recording some state in the decoder to produce a node at a later time.
func (d *Decoder) nextRootNode(tnode *toml.Node) error {
	switch tnode.Kind {
	// Key-Values in TOML are in the form of:
	//
	//   foo.title = "Foo"
	//   foo.bar.baz = "value"
	//
	// We decode them as "inline" structs in CUE, which keeps the original shape:
	//
	//   foo: title: "Foo"
	//   foo: bar: baz: "value"
	//
	// An alternative would be to join struct literals, which avoids some repetition,
	// but also introduces extra lines and may break some comment positions:
	//
	//   foo: {
	//       title: "Foo"
	//       bar: baz: "value"
	//   }
	case toml.KeyValue:
		// Top-level fields begin a new line.
		field, err := d.decodeField(d.currentTableKey, tnode, token.Newline)
		if err != nil {
			return err
		}
		if d.currentTable != nil {
			d.currentTable.Elts = append(d.currentTable.Elts, field)
		} else {
			d.topFile.Elts = append(d.topFile.Elts, field)
		}

	case toml.Table:
		// Tables always begin a new line.
		key, keyElems := d.decodeKey("", tnode.Key())
		// All table keys must be unique, including for the top-level table.
		if d.seenTableKeys[key] {
			return d.nodeErrf(tnode.Child(), "duplicate key: %s", key)
		}
		d.seenTableKeys[key] = true

		// We want a multi-line struct with curly braces,
		// just like TOML's tables are on multiple lines.
		d.currentTable = &ast.StructLit{
			// No positions, as TOML doesn't have table delimiters.
			Lbrace: token.NoPos.WithRel(token.Blank),
			Rbrace: token.NoPos.WithRel(token.Newline),
		}
		array := d.findArrayPrefix(key)
		if array != nil { // [last_array.new_table]
			if array.rkey == key {
				return d.nodeErrf(tnode.Child(), "cannot redeclare table array %q as a table", key)
			}
			subKeyElems := keyElems[array.level:]
			topField, leafField := d.inlineFields(subKeyElems, token.Newline)
			array.lastTable.Elts = append(array.lastTable.Elts, topField)
			leafField.Value = d.currentTable
		} else { // [new_table]
			topField, leafField := d.inlineFields(keyElems, token.Newline)
			d.topFile.Elts = append(d.topFile.Elts, topField)
			leafField.Value = d.currentTable
		}
		d.currentTableKey = key

	case toml.ArrayTable:
		// Table array elements always begin a new line.
		key, keyElems := d.decodeKey("", tnode.Key())
		if d.seenTableKeys[key] {
			return d.nodeErrf(tnode.Child(), "cannot redeclare key %q as a table array", key)
		}
		// Each struct inside a table array sits on separate lines.
		d.currentTable = &ast.StructLit{
			// No positions, as TOML doesn't have table delimiters.
			Lbrace: token.NoPos.WithRel(token.Newline),
			Rbrace: token.NoPos.WithRel(token.Newline),
		}
		if array := d.findArrayPrefix(key); array != nil && array.level == len(keyElems) {
			// [[last_array]] - appending to an existing array.
			d.currentTableKey = key + "." + strconv.Itoa(len(array.list.Elts))
			array.lastTable = d.currentTable
			array.list.Elts = append(array.list.Elts, d.currentTable)
		} else {
			// Creating a new array via either [[new_array]] or [[last_array.new_array]].
			// We want a multi-line list with square braces,
			// since TOML's table arrays are on multiple lines.
			list := &ast.ListLit{
				// No positions, as TOML doesn't have array table delimiters.
				Lbrack: token.NoPos.WithRel(token.Blank),
				Rbrack: token.NoPos.WithRel(token.Newline),
			}
			if array == nil {
				// [[new_array]] - at the top level
				topField, leafField := d.inlineFields(keyElems, token.Newline)
				d.topFile.Elts = append(d.topFile.Elts, topField)
				leafField.Value = list
			} else {
				// [[last_array.new_array]] - on the last array element
				subKeyElems := keyElems[array.level:]
				topField, leafField := d.inlineFields(subKeyElems, token.Newline)
				array.lastTable.Elts = append(array.lastTable.Elts, topField)
				leafField.Value = list
			}

			d.currentTableKey = key + ".0"
			list.Elts = append(list.Elts, d.currentTable)
			d.openTableArrays = append(d.openTableArrays, openTableArray{
				rkey:      key,
				level:     len(keyElems),
				list:      list,
				lastTable: d.currentTable,
			})
		}

	default:
		return fmt.Errorf("encoding/toml.Decoder.nextRootNode: unknown %s %#v", tnode.Kind, tnode)
	}
	return nil
}

// decodeField decodes a single table key and its value as a struct field.
func (d *Decoder) decodeField(rkey rootedKey, tnode *toml.Node, relPos token.RelPos) (*ast.Field, error) {
	rkey, keyElems := d.decodeKey(rkey, tnode.Key())
	if d.findArray(rkey) != nil {
		return nil, d.nodeErrf(tnode.Child().Next(), "cannot redeclare table array %q as a table", rkey)
	}
	topField, leafField := d.inlineFields(keyElems, relPos)
	// All table keys must be unique, including inner table ones.
	if d.seenTableKeys[rkey] {
		return nil, d.nodeErrf(tnode.Child().Next(), "duplicate key: %s", rkey)
	}
	d.seenTableKeys[rkey] = true
	value, err := d.decodeExpr(rkey, tnode.Value())
	if err != nil {
		return nil, err
	}
	leafField.Value = value
	return topField, nil
}

// findArray returns an existing table array if one exists at exactly the given key.
func (d *Decoder) findArray(rkey rootedKey) *openTableArray {
	for i, arr := range d.openTableArrays {
		if arr.rkey == rkey {
			return &d.openTableArrays[i]
		}
	}
	return nil
}

// findArray returns an existing table array if one exists at exactly the given key
// or as a prefix to the given key.
func (d *Decoder) findArrayPrefix(rkey rootedKey) *openTableArray {
	// TODO(mvdan): see the performance TODO on [Decoder.openTableArrays].

	// Prefer an exact match over a relative prefix match.
	if arr := d.findArray(rkey); arr != nil {
		return arr
	}
	// The longest relative key match wins.
	maxLevel := 0
	var maxLevelArr *openTableArray
	for i, arr := range d.openTableArrays {
		if strings.HasPrefix(rkey, arr.rkey+".") && arr.level > maxLevel {
			maxLevel = arr.level
			maxLevelArr = &d.openTableArrays[i]
		}
	}
	if maxLevel > 0 {
		return maxLevelArr
	}
	return nil
}

// tomlKey represents a name with a position which forms part of a TOML dotted key,
// such as "foo" from "[foo.bar.baz]".
type tomlKey struct {
	name  string
	shape toml.Shape
}

// decodeKey extracts a rootedKey from a TOML node key iterator,
// appending to the given parent key and returning the unquoted string elements.
func (d *Decoder) decodeKey(rkey rootedKey, iter toml.Iterator) (rootedKey, []tomlKey) {
	var elems []tomlKey
	for iter.Next() {
		node := iter.Node()
		name := string(node.Data)
		// TODO(mvdan): use an append-like API once we have benchmarks
		if len(rkey) > 0 {
			rkey += "."
		}
		rkey += quoteLabelIfNeeded(name)
		elems = append(elems, tomlKey{name, d.shape(node)})
	}
	return rkey, elems
}

// inlineFields constructs a single-line chain of CUE fields joined with structs,
// so that an input like:
//
//	["foo", "bar.baz", "zzz"]
//
// results in the CUE fields:
//
//	foo: "bar.baz": zzz: <nil>
//
// The "top" field, in this case "foo", can then be added as an element to a struct.
// The "leaf" field, in this case "zzz", leaves its value as nil to be filled out.
func (d *Decoder) inlineFields(tkeys []tomlKey, relPos token.RelPos) (top, leaf *ast.Field) {
	curField := &ast.Field{
		Label: d.label(tkeys[0], relPos),
	}

	topField := curField
	for _, tkey := range tkeys[1:] {
		nextField := &ast.Field{
			Label: d.label(tkey, token.Blank), // on the same line
		}
		curField.Value = &ast.StructLit{Elts: []ast.Decl{nextField}}
		curField = nextField
	}
	return topField, curField
}

// quoteLabelIfNeeded quotes a label name only if it needs quoting.
//
// TODO(mvdan): this exists in multiple packages; move to cue/literal or cue/ast?
func quoteLabelIfNeeded(name string) string {
	if ast.IsValidIdent(name) {
		return name
	}
	return literal.Label.Quote(name)
}

// label creates an ast.Label that represents a key with exactly the literal string name.
// This means a quoted string literal for the key "_", as TOML never means "top",
// as well as for any keys beginning with an underscore, as we don't want to hide any fields.
// cue/format knows how to quote any other identifiers correctly.
func (d *Decoder) label(tkey tomlKey, relPos token.RelPos) ast.Label {
	pos := d.tokenFile.Pos(tkey.shape.Start.Offset, relPos)
	if strings.HasPrefix(tkey.name, "_") {
		return &ast.BasicLit{
			ValuePos: pos,
			Kind:     token.STRING,
			Value:    literal.String.Quote(tkey.name),
		}
	}
	return &ast.Ident{
		NamePos: pos,
		Name:    tkey.name,
	}
}

// decodeExpr decodes a single TOML value expression, found on the right side
// of a `key = value` line.
func (d *Decoder) decodeExpr(rkey rootedKey, tnode *toml.Node) (ast.Expr, error) {
	// TODO(mvdan): we currently assume that TOML basic literals (string, int, float)
	// are also valid CUE literals; we should double check this, perhaps via fuzzing.
	data := string(tnode.Data)
	var expr ast.Expr
	switch tnode.Kind {
	case toml.String:
		expr = ast.NewString(data)
	case toml.Integer:
		expr = ast.NewLit(token.INT, data)
	case toml.Float:
		expr = ast.NewLit(token.FLOAT, data)
	case toml.Bool:
		expr = ast.NewBool(data == "true")
	case toml.Array:
		list := &ast.ListLit{}
		elems := tnode.Children()
		for elems.Next() {
			key := rkey + "." + strconv.Itoa(len(list.Elts))
			elem, err := d.decodeExpr(key, elems.Node())
			if err != nil {
				return nil, err
			}
			list.Elts = append(list.Elts, elem)
		}
		expr = list
	case toml.InlineTable:
		strct := &ast.StructLit{
			// We want a single-line struct, just like TOML's inline tables are on a single line.
			Lbrace: token.NoPos.WithRel(token.Blank),
			Rbrace: token.NoPos.WithRel(token.Blank),
		}
		elems := tnode.Children()
		for elems.Next() {
			// Inline table fields are on the same line.
			field, err := d.decodeField(rkey, elems.Node(), token.Blank)
			if err != nil {
				return nil, err
			}
			strct.Elts = append(strct.Elts, field)
		}
		expr = strct
	case toml.LocalDate, toml.LocalTime, toml.LocalDateTime, toml.DateTime:
		// CUE does not have native date nor time literal kinds,
		// so we decode these as strings exactly as they came in
		// and we validate them with time.Format using the corresponding format string.
		// Not only does this ensure that the resulting CUE can be used with our time package,
		// but it also means that we can roundtrip a TOML timestamp without confusing it for a string.
		var format ast.Expr
		switch tnode.Kind {
		case toml.LocalDate:
			// TODO(mvdan): rename time.RFC3339Date to time.DateOnly to mirror Go
			format = ast.NewSel(&ast.Ident{
				Name: "time",
				Node: ast.NewImport(nil, "time"),
			}, "RFC3339Date")
		case toml.LocalTime:
			// TODO(mvdan): add TimeOnly to CUE's time package to mirror Go
			format = ast.NewString(time.TimeOnly)
		case toml.LocalDateTime:
			// RFC3339 minus the timezone; this seems like a format peculiar to TOML.
			format = ast.NewString("2006-01-02T15:04:05")
		default: // DateTime
			format = ast.NewSel(&ast.Ident{
				Name: "time",
				Node: ast.NewImport(nil, "time"),
			}, "RFC3339")
		}
		expr = ast.NewBinExpr(token.AND, ast.NewString(data), ast.NewCall(
			ast.NewSel(&ast.Ident{
				Name: "time",
				Node: ast.NewImport(nil, "time"),
			}, "Format"), format),
		)
	default:
		return nil, fmt.Errorf("encoding/toml.Decoder.decodeExpr: unknown %s %#v", tnode.Kind, tnode)
	}
	// TODO(mvdan): some go-toml nodes such as Kind=toml.Bool do not seem to have a Raw Range
	// which would let us grab their position information; fix this upstream.
	if tnode.Raw.Length > 0 {
		ast.SetPos(expr, d.tokenFile.Pos(d.shape(tnode).Start.Offset, token.NoRelPos))
	}
	return expr, nil
}