1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
// This file implements the closedness algorithm.
// Outline of algorithm
//
// To compute closedness each Vertex is associated with a tree which has
// leaf nodes with sets of allowed labels, and interior nodes that describe
// how these sets may be combines: Or, for embedding, or And for definitions.
//
// Each conjunct of a Vertex is associated with such a leaf node. Each
// conjunct that evaluates to a struct is added to the list of Structs, which
// in the end forms this tree. If a conjunct is embedded, or references another
// struct or definition, it adds interior node to reflect this.
//
// To test whether a feature is allowed, it must satisfy the resulting
// expression tree.
//
// In order to avoid having to copy the tree for each node, the tree is linked
// from leaf node to root, rather than the other way around. This allows
// parent nodes to be shared as the tree grows and ensures that the growth
// of the tree is bounded by the number of conjuncts. As a consequence, this
// requires a two-pass algorithm:
//
// - walk up to mark which nodes are required and count the number of
// child nodes that need to be satisfied.
// - verify fields in leaf structs and mark parent leafs as satisfied
// when appropriate.
//
// A label is allowed if all required root nodes are marked as accepted after
// these two passes.
//
// A note on embeddings: it is important to keep track which conjuncts originate
// from an embedding, as an embedded value may eventually turn into a closed
// struct. Consider
//
// a: {
// b
// d: e: int
// }
// b: d: {
// #A & #B
// }
//
// At the point of evaluating `a`, the struct is not yet closed. However,
// descending into `d` will trigger the inclusion of definitions which in turn
// causes the struct to be closed. At this point, it is important to know that
// `b` originated from an embedding, as otherwise `e` may not be allowed.
// TODO(perf):
// - less nodes
// - disable StructInfo nodes that can no longer pass a feature
// - sort StructInfos active ones first.
// TODO(errors): return a dedicated ConflictError that can track original
// positions on demand.
// IsInOneOf reports whether any of the Structs associated with v is contained
// within any of the span types in the given mask.
func (v *Vertex) IsInOneOf(mask SpanType) bool {
for _, s := range v.Structs {
if s.CloseInfo.IsInOneOf(mask) {
return true
}
}
return false
}
// IsRecursivelyClosed returns true if this value is either a definition or unified
// with a definition.
func (v *Vertex) IsRecursivelyClosed() bool {
return v.ClosedRecursive || v.IsInOneOf(DefinitionSpan)
}
type closeNodeType uint8
const (
// a closeRef node is created when there is a non-definition reference.
closeRef closeNodeType = iota
// closeDef indicates this node was introduced as a result of referencing
// a definition.
closeDef
// closeEmbed indicates this node was added as a result of an embedding.
closeEmbed
)
// TODO: merge with closeInfo: this is a leftover of the refactoring.
type CloseInfo struct {
*closeInfo // old implementation (TODO: remove)
cc *closeContext // new implementation (TODO: rename field to closeCtx)
// IsClosed is true if this conjunct represents a single level of closing
// as indicated by the closed builtin.
IsClosed bool
// FromEmbed indicates whether this conjunct was inserted because of an
// embedding. This flag is sticky: it will be set for conjuncts created
// from fields defined by this conjunct.
// NOTE: only used when using closeContext.
FromEmbed bool
// FromDef indicates whether this conjunct was inserted because of a
// definition. This flag is sticky: it will be set for conjuncts created
// from fields defined by this conjunct.
// NOTE: only used when using closeContext.
FromDef bool
// GroupUnify indicates that this conjunct needs to spawn its own
// closeContext. This is necessary when programmatically combining
// top-level values, such as with Value.Unify.
GroupUnify bool
// FieldTypes indicates which kinds of fields (optional, dynamic, patterns,
// etc.) are contained in this conjunct.
FieldTypes OptionalType
CycleInfo
}
func (c CloseInfo) Location() Node {
if c.closeInfo == nil {
return nil
}
return c.closeInfo.location
}
func (c CloseInfo) span() SpanType {
if c.closeInfo == nil {
return 0
}
return c.closeInfo.span
}
func (c CloseInfo) RootSpanType() SpanType {
if c.closeInfo == nil {
return 0
}
return c.root
}
// IsInOneOf reports whether c is contained within any of the span types in the
// given mask.
func (c CloseInfo) IsInOneOf(t SpanType) bool {
return c.span()&t != 0
}
// TODO(perf): remove: error positions should always be computed on demand
// in dedicated error types.
func (c *CloseInfo) AddPositions(ctx *OpContext) {
for s := c.closeInfo; s != nil; s = s.parent {
if loc := s.location; loc != nil {
ctx.AddPosition(loc)
}
}
}
// TODO(perf): use on StructInfo. Then if parent and expression are the same
// it is possible to use cached value.
func (c CloseInfo) SpawnEmbed(x Node) CloseInfo {
c.closeInfo = &closeInfo{
parent: c.closeInfo,
location: x,
mode: closeEmbed,
root: EmbeddingSpan,
span: c.span() | EmbeddingSpan,
}
return c
}
// SpawnGroup is used for structs that contain embeddings that may end up
// closing the struct. This is to force that `b` is not allowed in
//
// a: {#foo} & {b: int}
func (c CloseInfo) SpawnGroup(x Expr) CloseInfo {
c.closeInfo = &closeInfo{
parent: c.closeInfo,
location: x,
span: c.span(),
}
return c
}
// SpawnSpan is used to track that a value is introduced by a comprehension
// or constraint. Definition and embedding spans are introduced with SpawnRef
// and SpawnEmbed, respectively.
func (c CloseInfo) SpawnSpan(x Node, t SpanType) CloseInfo {
c.closeInfo = &closeInfo{
parent: c.closeInfo,
location: x,
root: t,
span: c.span() | t,
}
return c
}
func (c CloseInfo) SpawnRef(arc *Vertex, isDef bool, x Expr) CloseInfo {
span := c.span()
found := false
if !isDef {
xnode := Node(x) // Optimization so we're comparing identical interface types.
// TODO: make this work for non-definitions too.
for p := c.closeInfo; p != nil; p = p.parent {
if p.span == span && p.location == xnode {
found = true
break
}
}
}
if !found {
c.closeInfo = &closeInfo{
parent: c.closeInfo,
location: x,
span: span,
}
}
if isDef {
c.mode = closeDef
c.closeInfo.root = DefinitionSpan
c.closeInfo.span |= DefinitionSpan
}
return c
}
// IsDef reports whether an expressions is a reference that references a
// definition anywhere in its selection path.
//
// TODO(performance): this should be merged with resolve(). But for now keeping
// this code isolated makes it easier to see what it is for.
func IsDef(x Expr) (isDef bool, depth int) {
switch r := x.(type) {
case *FieldReference:
isDef = r.Label.IsDef()
case *SelectorExpr:
isDef, depth = IsDef(r.X)
depth++
if r.Sel.IsDef() {
isDef = true
}
case *IndexExpr:
isDef, depth = IsDef(r.X)
depth++
}
return isDef, depth
}
// A SpanType is used to indicate whether a CUE value is within the scope of
// a certain CUE language construct, the span type.
type SpanType uint8
const (
// EmbeddingSpan means that this value was embedded at some point and should
// not be included as a possible root node in the todo field of OpContext.
EmbeddingSpan SpanType = 1 << iota
ConstraintSpan
ComprehensionSpan
DefinitionSpan
)
type closeInfo struct {
// location records the expression that led to this node's introduction.
location Node
// The parent node in the tree.
parent *closeInfo
// TODO(performance): if references are chained, we could have a separate
// parent pointer to skip the chain.
// mode indicates whether this node was added as part of an embedding,
// definition or non-definition reference.
mode closeNodeType
// noCheck means this struct is irrelevant for closedness checking. This can
// happen when:
// - it is a sibling of a new definition.
noCheck bool // don't process for inclusion info
root SpanType
span SpanType
// decl is the parent declaration which contains the conjuct which
// gave rise to this closeInfo.
decl Decl
}
// closeStats holds the administrative fields for a closeInfo value. Each
// closeInfo is associated with a single closeStats value per unification
// operator. This association is done through an OpContext. This allows the
// same value to be used in multiple concurrent unification operations.
// NOTE: there are other parts of the algorithm that are not thread-safe yet.
type closeStats struct {
// the other fields of this closeStats value are only valid if generation
// is equal to the generation in OpContext. This allows for lazy
// initialization of closeStats.
generation int
// These counts keep track of how many required child nodes need to be
// completed before this node is accepted.
requiredCount int
acceptedCount int
// accepted is set if this node is accepted.
accepted bool
required bool
inTodoList bool // true if added to todo list.
next *closeStats
}
func (c *closeInfo) isClosed() bool {
return c.mode == closeDef
}
// isClosed reports whether v is closed at this level (so not recursively).
func isClosed(v *Vertex) bool {
// We could have used IsRecursivelyClosed here, but (effectively)
// implementing it again here allows us to only have to iterate over
// Structs once.
if v.ClosedRecursive || v.ClosedNonRecursive {
return true
}
// TODO(evalv3): this can be removed once we delete the evalv2 code.
for _, s := range v.Structs {
if s.IsClosed || s.IsInOneOf(DefinitionSpan) {
return true
}
}
return false
}
// Accept determines whether f is allowed in n. It uses the OpContext for
// caching administrative fields.
func Accept(ctx *OpContext, n *Vertex, f Feature) (found, required bool) {
if ctx.isDevVersion() {
return n.accept(ctx, f), true
}
ctx.generation++
ctx.todo = nil
var optionalTypes OptionalType
// TODO(perf): more aggressively determine whether a struct is open or
// closed: open structs do not have to be checked, yet they can particularly
// be the ones with performance issues, for instanced as a result of
// embedded for comprehensions.
for _, s := range n.Structs {
if !s.useForAccept() {
continue
}
markCounts(ctx, s.CloseInfo)
optionalTypes |= s.types
}
var str Value
if f.Index() == MaxIndex {
f &= fTypeMask
} else if optionalTypes&(HasComplexPattern|HasDynamic) != 0 && f.IsString() {
str = f.ToValue(ctx)
}
for _, s := range n.Structs {
if !s.useForAccept() {
continue
}
if verifyArc(ctx, s, f, str) {
// Beware: don't add to below expression: this relies on the
// side effects of markUp.
ok := markUp(ctx, s.closeInfo, 0)
found = found || ok
}
}
// Reject if any of the roots is not accepted.
for x := ctx.todo; x != nil; x = x.next {
if !x.accepted {
return false, true
}
}
return found, ctx.todo != nil
}
func markCounts(ctx *OpContext, info CloseInfo) {
if info.IsClosed {
markRequired(ctx, info.closeInfo)
return
}
for s := info.closeInfo; s != nil; s = s.parent {
if s.isClosed() {
markRequired(ctx, s)
return
}
}
}
func markRequired(ctx *OpContext, info *closeInfo) {
count := 0
for ; ; info = info.parent {
var s closeInfo
if info != nil {
s = *info
}
x := getScratch(ctx, info)
x.requiredCount += count
if x.required {
return
}
if s.span&EmbeddingSpan == 0 && !x.inTodoList {
x.next = ctx.todo
ctx.todo = x
x.inTodoList = true
}
x.required = true
if info == nil {
return
}
count = 0
if s.mode != closeEmbed {
count = 1
}
}
}
func markUp(ctx *OpContext, info *closeInfo, count int) bool {
for ; ; info = info.parent {
var s closeInfo
if info != nil {
s = *info
}
x := getScratch(ctx, info)
x.acceptedCount += count
if x.acceptedCount < x.requiredCount {
return false
}
x.accepted = true
if info == nil {
return true
}
count = 0
if x.required && s.mode != closeEmbed {
count = 1
}
}
}
// getScratch: explain generation.
func getScratch(ctx *OpContext, s *closeInfo) *closeStats {
m := ctx.closed
if m == nil {
m = map[*closeInfo]*closeStats{}
ctx.closed = m
}
x := m[s]
if x == nil {
x = &closeStats{}
m[s] = x
}
if x.generation != ctx.generation {
*x = closeStats{generation: ctx.generation}
}
return x
}
func verifyArc(ctx *OpContext, s *StructInfo, f Feature, label Value) bool {
isRegular := f.IsString()
o := s.StructLit
env := s.Env
if len(o.Additional) > 0 || o.IsOpen {
return true
}
for _, g := range o.Fields {
if f == g.Label {
return true
}
}
if !isRegular {
return false
}
// Do not record errors during this validation.
errs := ctx.errs
defer func() { ctx.errs = errs }()
if len(o.Dynamic) > 0 && f.IsString() && label != nil {
for _, b := range o.Dynamic {
v := env.evalCached(ctx, b.Key)
v, _ = ctx.getDefault(v)
s, ok := Unwrap(v).(*String)
if !ok {
continue
}
if label.(*String).Str == s.Str {
return true
}
}
}
for _, b := range o.Bulk {
if matchBulk(ctx, env, b, f, label) {
return true
}
}
// TODO(perf): delay adding this position: create a special error type that
// computes all necessary positions on demand.
if ctx != nil {
ctx.AddPosition(s.StructLit)
}
return false
}
|