File: composite.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (1629 lines) | stat: -rw-r--r-- 45,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package adt

import (
	"fmt"
	"slices"

	"cuelang.org/go/cue/ast"
	"cuelang.org/go/cue/errors"
	"cuelang.org/go/cue/token"
)

// TODO: unanswered questions about structural cycles:
//
// 1. When detecting a structural cycle, should we consider this as:
//    a) an unevaluated value,
//    b) an incomplete error (which does not affect parent validity), or
//    c) a special value.
//
// Making it an error is the simplest way to ensure reentrancy is disallowed:
// without an error it would require an additional mechanism to stop reentrancy
// from continuing to process. Even worse, in some cases it may only partially
// evaluate, resulting in unexpected results. For this reason, we are taking
// approach `b` for now.
//
// This has some consequences of how disjunctions are treated though. Consider
//
//     list: {
//        head: _
//        tail: list | null
//     }
//
// When making it an error, evaluating the above will result in
//
//     list: {
//        head: _
//        tail: null
//     }
//
// because list will result in a structural cycle, and thus an error, it will be
// stripped from the disjunction. This may or may not be a desirable property. A
// nice thing is that it is not required to write `list | *null`. A disadvantage
// is that this is perhaps somewhat inexplicit.
//
// When not making it an error (and simply cease evaluating child arcs upon
// cycle detection), the result would be:
//
//     list: {
//        head: _
//        tail: list | null
//     }
//
// In other words, an evaluation would result in a cycle and thus an error.
// Implementations can recognize such cases by having unevaluated arcs. An
// explicit structure cycle marker would probably be less error prone.
//
// Note that in both cases, a reference to list will still use the original
// conjuncts, so the result will be the same for either method in this case.
//
//
// 2. Structural cycle allowance.
//
// Structural cycle detection disallows reentrancy as well. This means one
// cannot use structs for recursive computation. This will probably preclude
// evaluation of some configuration. Given that there is no real alternative
// yet, we could allow structural cycle detection to be optionally disabled.

// An Environment links the parent scopes for identifier lookup to a composite
// node. Each conjunct that make up node in the tree can be associated with
// a different environment (although some conjuncts may share an Environment).
type Environment struct {
	Up     *Environment
	Vertex *Vertex

	// DynamicLabel is only set when instantiating a field from a pattern
	// constraint. It is used to resolve label references.
	DynamicLabel Feature

	// TODO(perf): make the following public fields a shareable struct as it
	// mostly is going to be the same for child nodes.

	// TODO: This can probably move into the nodeContext, making it a map from
	// conjunct to Value.
	cache map[cacheKey]Value
}

type cacheKey struct {
	Expr Expr
	Arc  *Vertex
}

func (e *Environment) up(ctx *OpContext, count int32) *Environment {
	for i := int32(0); i < count; i++ {
		e = e.Up
		ctx.Assertf(ctx.Pos(), e.Vertex != nil, "Environment.up encountered a nil vertex")
	}
	return e
}

type ID int32

// evalCached is used to look up dynamic field pattern constraint expressions.
func (e *Environment) evalCached(c *OpContext, x Expr) Value {
	if v, ok := x.(Value); ok {
		return v
	}
	key := cacheKey{x, nil}
	v, ok := e.cache[key]
	if !ok {
		if e.cache == nil {
			e.cache = map[cacheKey]Value{}
		}
		env, src := c.e, c.src
		c.e, c.src = e, x.Source()
		// Save and restore errors to ensure that only relevant errors are
		// associated with the cash.
		err := c.errs
		v = c.evalState(x, require(partial, allKnown)) // TODO: should this be finalized?
		c.e, c.src = env, src
		c.errs = err
		if b, ok := v.(*Bottom); !ok || !b.IsIncomplete() {
			e.cache[key] = v
		}
	}
	return v
}

// A Vertex is a node in the value tree. It may be a leaf or internal node.
// It may have arcs to represent elements of a fully evaluated struct or list.
//
// For structs, it only contains definitions and concrete fields.
// optional fields are dropped.
//
// It maintains source information such as a list of conjuncts that contributed
// to the value.
type Vertex struct {
	// Parent links to a parent Vertex. This parent should only be used to
	// access the parent's Label field to find the relative location within a
	// tree.
	Parent *Vertex

	// State:
	//   eval: nil, BaseValue: nil -- unevaluated
	//   eval: *,   BaseValue: nil -- evaluating
	//   eval: *,   BaseValue: *   -- finalized
	//
	state *nodeContext

	// _cc manages the closedness logic for this Vertex. It is created
	// by rootCloseContext.
	// TODO: move back to nodeContext, but be sure not to clone it.
	_cc *closeContext

	// Label is the feature leading to this vertex.
	Label Feature

	// TODO: move the following fields to nodeContext.

	// status indicates the evaluation progress of this vertex.
	status vertexStatus

	// hasAllConjuncts indicates that the set of conjuncts is complete.
	// This is the case if the conjuncts of all its ancestors have been
	// processed.
	hasAllConjuncts bool

	// isData indicates that this Vertex is to be interpreted as data: pattern
	// and additional constraints, as well as optional fields, should be
	// ignored.
	isData bool

	// ClosedRecursive indicates whether this Vertex is recursively closed.
	// This is the case, for instance, if it is a node in a definition or if one
	// of the conjuncts, or ancestor conjuncts, is a definition.
	ClosedRecursive bool

	// ClosedNonRecursive indicates that this Vertex has been closed for this
	// level only. This supports the close builtin.
	ClosedNonRecursive bool

	// HasEllipsis indicates that this Vertex is open by means of an ellipsis.
	// TODO: combine this field with Closed once we removed the old evaluator.
	HasEllipsis bool

	// MultiLet indicates whether multiple let fields were added from
	// different sources. If true, a LetReference must be resolved using
	// the per-Environment value cache.
	MultiLet bool

	// After this is set, no more arcs may be added during evaluation. This is
	// set, for instance, after a Vertex is used as a source for comprehensions,
	// or any other operation that relies on the set of arcs being constant.
	LockArcs bool

	// IsDynamic signifies whether this struct is computed as part of an
	// expression and not part of the static evaluation tree.
	// Used for cycle detection.
	IsDynamic bool

	// IsPatternConstraint indicates that this Vertex is an entry in
	// Vertex.PatternConstraints.
	IsPatternConstraint bool

	// nonRooted indicates that this Vertex originates within the context of
	// a dynamic, or inlined, Vertex (e.g. `{out: ...}.out``). Note that,
	// through reappropriation, this Vertex may become rooted down the line.
	// Use the !IsDetached method to determine whether this Vertex became
	// rooted.
	nonRooted bool // indicates that there is no path from the root of the tree.

	// anonymous indicates that this Vertex is being computed within a
	// addressable context, or in other words, a context for which there is
	// a path from the root of the file. Typically, the only addressable
	// contexts are fields. Examples of fields that are not addressable are
	// the for source of comprehensions and let fields or let clauses.
	anonymous bool

	// hasPendingArc is set if this Vertex has a void arc (e.g. for comprehensions)
	hasPendingArc bool

	// IsDisjunct indicates this Vertex is a disjunct resulting from a
	// disjunction evaluation.
	IsDisjunct bool

	// IsShared is true if BaseValue holds a Vertex of a node of another path.
	// If a node is shared, the user should be careful with traversal.
	// The debug printer, for instance, takes extra care not to print in a loop.
	IsShared bool

	// IsCyclic is true if a node is cyclic, for instance if its value is
	// a cyclic reference to a shared node or if the value is a conjunction
	// of which at least one value is cyclic (not yet supported).
	IsCyclic bool

	// ArcType indicates the level of optionality of this arc.
	ArcType ArcType

	// cyclicReferences is a linked list of internal references pointing to this
	// Vertex. This is used to shorten the path of some structural cycles.
	cyclicReferences *RefNode

	// BaseValue is the value associated with this vertex. For lists and structs
	// this is a sentinel value indicating its kind.
	BaseValue BaseValue

	// ChildErrors is the collection of all errors of children.
	ChildErrors *Bottom

	// The parent of nodes can be followed to determine the path within the
	// configuration of this node.
	// Value  Value
	Arcs []*Vertex // arcs are sorted in display order.

	// PatternConstraints are additional constraints that match more nodes.
	// Constraints that match existing Arcs already have their conjuncts
	// mixed in.
	// TODO: either put in StructMarker/ListMarker or integrate with Arcs
	// so that this pointer is unnecessary.
	PatternConstraints *Constraints

	// Conjuncts lists the structs that ultimately formed this Composite value.
	// This includes all selected disjuncts.
	//
	// This value may be nil, in which case the Arcs are considered to define
	// the final value of this Vertex.
	//
	// TODO: all access to Conjuncts should go through functions like
	// VisitLeafConjuncts and VisitAllConjuncts. We should probably make this
	// an unexported field.
	Conjuncts ConjunctGroup

	// Structs is a slice of struct literals that contributed to this value.
	// This information is used to compute the topological sort of arcs.
	Structs []*StructInfo
}

func deref(v *Vertex) *Vertex {
	v = v.DerefValue()
	n := v.state
	if n != nil {
		v = n.underlying
	}
	if v == nil {
		panic("unexpected nil underlying with non-nil state")
	}
	return v
}

func equalDeref(a, b *Vertex) bool {
	return deref(a) == deref(b)
}

func (v *Vertex) cc() *closeContext {
	return v._cc
}

// rootCloseContext creates a closeContext for this Vertex or returns the
// existing one.
func (v *Vertex) rootCloseContext(ctx *OpContext) *closeContext {
	if v._cc == nil {
		v._cc = &closeContext{
			group:           &v.Conjuncts,
			parent:          nil,
			src:             v,
			parentConjuncts: v,
			decl:            v,
		}
		v._cc.incDependent(ctx, ROOT, nil) // matched in REF(decrement:nodeDone)
	}

	if p := v.Parent; p != nil {
		pcc := p.rootCloseContext(ctx)
		v._cc.depth = pcc.depth + 1
	}

	return v._cc
}

// newInlineVertex creates a Vertex that is needed for computation, but for
// which there is no CUE path defined from the root Vertex.
func (ctx *OpContext) newInlineVertex(parent *Vertex, v BaseValue, a ...Conjunct) *Vertex {
	n := &Vertex{
		BaseValue: v,
		IsDynamic: true,
		ArcType:   ArcMember,
		Conjuncts: a,
	}
	if !ctx.isDevVersion() {
		n.Parent = parent
	}
	if ctx.inDetached > 0 {
		n.anonymous = true
	}
	return n

}

// updateArcType updates v.ArcType if t is more restrictive.
func (v *Vertex) updateArcType(t ArcType) {
	if t >= v.ArcType {
		return
	}
	if v.ArcType == ArcNotPresent {
		return
	}
	s := v.state
	// NOTE: this condition does not occur in V2.
	if s != nil && v.isFinal() {
		c := s.ctx
		if s.scheduler.frozen.meets(arcTypeKnown) {
			p := token.NoPos
			if src := c.Source(); src != nil {
				p = src.Pos()
			}
			parent := v.Parent
			parent.reportFieldCycleError(c, p, v.Label)
			return
		}
	}
	if v.Parent != nil && v.Parent.ArcType == ArcPending && v.Parent.state != nil && v.Parent.state.ctx.isDevVersion() {
		// TODO: check that state is always non-nil.
		v.Parent.state.unshare()
	}
	v.ArcType = t
}

// isDefined indicates whether this arc is a "value" field, and not a constraint
// or void arc.
func (v *Vertex) isDefined() bool {
	return v.ArcType == ArcMember
}

// IsConstraint reports whether the Vertex is an optional or required field.
func (v *Vertex) IsConstraint() bool {
	return v.ArcType == ArcOptional || v.ArcType == ArcRequired
}

// IsDefined indicates whether this arc is defined meaning it is not a
// required or optional constraint and not a "void" arc.
// It will evaluate the arc, and thus evaluate any comprehension, to make this
// determination.
func (v *Vertex) IsDefined(c *OpContext) bool {
	if v.isDefined() {
		return true
	}
	v.Finalize(c)
	return v.isDefined()
}

// Rooted reports if it is known there is a path from the root of the tree to
// this Vertex. If this returns false, it may still be rooted if the node
// originated from an inline struct, but was later reappropriated.
func (v *Vertex) Rooted() bool {
	return !v.nonRooted && !v.Label.IsLet() && !v.IsDynamic
}

// IsDetached reports whether this Vertex does not have a path from the root.
func (v *Vertex) IsDetached() bool {
	// v might have resulted from an inline struct that was subsequently shared.
	// In this case, it is still rooted.
	for v != nil {
		if v.Rooted() {
			return false
		}
		// Already take into account the provisionally assigned parent.
		if v.state != nil && v.state.parent != nil {
			v = v.state.parent
		} else {
			v = v.Parent
		}
	}

	return true
}

// MayAttach reports whether this Vertex may attach to another arc.
// The behavior is undefined if IsDetached is true.
func (v *Vertex) MayAttach() bool {
	return !v.Label.IsLet() && !v.anonymous
}

type ArcType uint8

const (
	// ArcMember means that this arc is a normal non-optional field
	// (including regular, hidden, and definition fields).
	ArcMember ArcType = iota

	// ArcRequired is like optional, but requires that a field be specified.
	// Fields are of the form foo!.
	ArcRequired

	// ArcOptional represents fields of the form foo? and defines constraints
	// for foo in case it is defined.
	ArcOptional

	// ArcPending means that it is not known yet whether an arc exists and that
	// its conjuncts need to be processed to find out. This happens when an arc
	// is provisionally added as part of a comprehension, but when this
	// comprehension has not yet yielded any results.
	ArcPending

	// ArcNotPresent indicates that this arc is not present and, unlike
	// ArcPending, needs no further processing.
	ArcNotPresent

	// TODO: define a type for optional arcs. This will be needed for pulling
	// in optional fields into the Vertex, which, in turn, is needed for
	// structure sharing, among other things.
	// We could also define types for required fields and potentially lets.
)

func (a ArcType) String() string {
	switch a {
	case ArcMember:
		return "Member"
	case ArcOptional:
		return "Optional"
	case ArcRequired:
		return "Required"
	case ArcPending:
		return "Pending"
	case ArcNotPresent:
		return "NotPresent"
	}
	return fmt.Sprintf("ArcType(%d)", a)
}

// definitelyExists reports whether an arc is a constraint or member arc.
// TODO: we should check that users of this call ensure there are no
// ArcPendings.
func (v *Vertex) definitelyExists() bool {
	return v.ArcType < ArcPending
}

// ConstraintFromToken converts a given AST constraint token to the
// corresponding ArcType.
func ConstraintFromToken(t token.Token) ArcType {
	switch t {
	case token.OPTION:
		return ArcOptional
	case token.NOT:
		return ArcRequired
	}
	return ArcMember
}

// Token reports the token corresponding to the constraint represented by a,
// or token.ILLEGAL otherwise.
func (a ArcType) Token() (t token.Token) {
	switch a {
	case ArcOptional:
		t = token.OPTION
	case ArcRequired:
		t = token.NOT
	}
	return t
}

// Suffix reports the field suffix for the given ArcType if it is a
// constraint or the empty string otherwise.
func (a ArcType) Suffix() string {
	switch a {
	case ArcOptional:
		return "?"
	case ArcRequired:
		return "!"

	// For debugging internal state. This is not CUE syntax.
	case ArcPending:
		return "*"
	case ArcNotPresent:
		return "-"
	}
	return ""
}

func (v *Vertex) Clone() *Vertex {
	c := *v
	c.state = nil
	return &c
}

type StructInfo struct {
	*StructLit

	Env *Environment

	CloseInfo

	// Embed indicates the struct in which this struct is embedded (originally),
	// or nil if this is a root structure.
	// Embed   *StructInfo
	// Context *RefInfo // the location from which this struct originates.
	Disable bool

	Embedding bool

	// Decl contains this Struct
	Decl Decl
}

// TODO(perf): this could be much more aggressive for eliminating structs that
// are immaterial for closing.
func (s *StructInfo) useForAccept() bool {
	if c := s.closeInfo; c != nil {
		return !c.noCheck
	}
	return true
}

// vertexStatus indicates the evaluation progress of a Vertex.
type vertexStatus int8

//go:generate go run golang.org/x/tools/cmd/stringer -type=vertexStatus

const (
	// unprocessed indicates a Vertex has not been processed before.
	// Value must be nil.
	unprocessed vertexStatus = iota

	// evaluating means that the current Vertex is being evaluated. If this is
	// encountered it indicates a reference cycle. Value must be nil.
	evaluating

	// partial indicates that the result was only partially evaluated. It will
	// need to be fully evaluated to get a complete results.
	//
	// TODO: this currently requires a renewed computation. Cache the
	// nodeContext to allow reusing the computations done so far.
	partial

	// conjuncts is the state reached when all conjuncts have been evaluated,
	// but without recursively processing arcs.
	conjuncts

	// evaluatingArcs indicates that the arcs of the Vertex are currently being
	// evaluated. If this is encountered it indicates a structural cycle.
	// Value does not have to be nil
	evaluatingArcs

	// finalized means that this node is fully evaluated and that the results
	// are save to use without further consideration.
	finalized
)

// Wrap creates a Vertex that takes w as a shared value. This allows users
// to set different flags for a wrapped Vertex.
func (c *OpContext) Wrap(v *Vertex, id CloseInfo) *Vertex {
	w := c.newInlineVertex(nil, nil, v.Conjuncts...)
	n := w.getState(c)
	n.share(makeAnonymousConjunct(nil, v, nil), v, CloseInfo{})
	return w
}

// Status returns the status of the current node. When reading the status, one
// should always use this method over directly reading status field.
//
// NOTE: this only matters for EvalV3 and beyonds, so a lot of the old code
// might still access it directly.
func (v *Vertex) Status() vertexStatus {
	v = v.DerefValue()
	return v.status
}

// ForceDone prevents v from being evaluated.
func (v *Vertex) ForceDone() {
	v.updateStatus(finalized)
}

// IsUnprocessed reports whether v is unprocessed.
func (v *Vertex) IsUnprocessed() bool {
	return v.Status() == unprocessed
}

func (v *Vertex) updateStatus(s vertexStatus) {
	if !isCyclePlaceholder(v.BaseValue) {
		if !v.IsErr() && v.state != nil {
			Assertf(v.state.ctx, v.Status() <= s+1, "attempt to regress status from %d to %d", v.Status(), s)
		}
	}

	if s == finalized && v.BaseValue == nil {
		// TODO: for debugging.
		// panic("not finalized")
	}
	v.status = s
}

// setParentDone signals v that the conjuncts of all ancestors have been
// processed.
// If all conjuncts of this node have been set, all arcs will be notified
// of this parent being done.
//
// Note: once a vertex has started evaluation (state != nil), insertField will
// cause all conjuncts to be immediately processed. This means that if all
// ancestors of this node processed their conjuncts, and if this node has
// processed all its conjuncts as well, all nodes that it embedded will have
// received all their conjuncts as well, after which this node will have been
// notified of these conjuncts.
func (v *Vertex) setParentDone() {
	v.hasAllConjuncts = true
	// Could set "Conjuncts" flag of arc at this point.
	if n := v.state; n != nil && len(n.conjuncts) == n.conjunctsPos {
		for _, a := range v.Arcs {
			a.setParentDone()
		}
	}
}

// VisitLeafConjuncts visits all conjuncts that are leafs of the ConjunctGroup tree.
func (v *Vertex) VisitLeafConjuncts(f func(Conjunct) bool) {
	VisitConjuncts(v.Conjuncts, f)
}

func VisitConjuncts(a []Conjunct, f func(Conjunct) bool) bool {
	for _, c := range a {
		switch x := c.x.(type) {
		case *ConjunctGroup:
			if !VisitConjuncts(*x, f) {
				return false
			}
		default:
			if !f(c) {
				return false
			}
		}
	}
	return true
}

// VisitAllConjuncts visits all conjuncts of v, including ConjunctGroups.
// Note that ConjunctGroups do not have an Environment associated with them.
func (v *Vertex) VisitAllConjuncts(f func(c Conjunct, isLeaf bool)) {
	visitAllConjuncts(v.Conjuncts, f)
}

func visitAllConjuncts(a []Conjunct, f func(c Conjunct, isLeaf bool)) {
	for _, c := range a {
		switch x := c.x.(type) {
		case *ConjunctGroup:
			f(c, false)
			visitAllConjuncts(*x, f)
		default:
			f(c, true)
		}
	}
}

// HasConjuncts reports whether v has any conjuncts.
func (v *Vertex) HasConjuncts() bool {
	return len(v.Conjuncts) > 0
}

// SingleConjunct reports whether there is a single leaf conjunct and returns 1
// if so. It will return 0 if there are no conjuncts or 2 if there are more than
// 1.
//
// This is an often-used operation.
func (v *Vertex) SingleConjunct() (c Conjunct, count int) {
	if v == nil {
		return c, 0
	}
	v.VisitLeafConjuncts(func(x Conjunct) bool {
		c = x
		if count++; count > 1 {
			return false
		}
		return true
	})

	return c, count
}

// ConjunctAt assumes a Vertex represents a top-level Vertex, such as one
// representing a file or a let expressions, where all conjuncts appear at the
// top level. It may panic if this condition is not met.
func (v *Vertex) ConjunctAt(i int) Conjunct {
	return v.Conjuncts[i]
}

// Value returns the Value of v without definitions if it is a scalar
// or itself otherwise.
func (v *Vertex) Value() Value {
	switch x := v.BaseValue.(type) {
	case nil:
		return nil
	case *StructMarker, *ListMarker:
		return v
	case Value:
		// TODO: recursively descend into Vertex?
		return x
	default:
		panic(fmt.Sprintf("unexpected type %T", v.BaseValue))
	}
}

// isUndefined reports whether a vertex does not have a useable BaseValue yet.
func (v *Vertex) isUndefined() bool {
	if !v.isDefined() {
		return true
	}
	switch v.BaseValue {
	case nil, cycle:
		return true
	}
	return false
}

// isFinal reports whether this node may no longer be modified.
func (v *Vertex) isFinal() bool {
	// TODO(deref): the accounting of what is final should be recorded
	// in the original node. Remove this dereference once the old
	// evaluator has been removed.
	return v.Status() == finalized
}

func (x *Vertex) IsConcrete() bool {
	return x.Concreteness() <= Concrete
}

// IsData reports whether v should be interpreted in data mode. In other words,
// it tells whether optional field matching and non-regular fields, like
// definitions and hidden fields, should be ignored.
func (v *Vertex) IsData() bool {
	return v.isData || !v.HasConjuncts()
}

// ToDataSingle creates a new Vertex that represents just the regular fields
// of this vertex. Arcs are left untouched.
// It is used by cue.Eval to convert nodes to data on per-node basis.
func (v *Vertex) ToDataSingle() *Vertex {
	w := *v
	w.isData = true
	w.state = nil
	w.status = finalized
	return &w
}

// ToDataAll returns a new v where v and all its descendents contain only
// the regular fields.
func (v *Vertex) ToDataAll(ctx *OpContext) *Vertex {
	v.Finalize(ctx)

	arcs := make([]*Vertex, 0, len(v.Arcs))
	for _, a := range v.Arcs {
		if !a.IsDefined(ctx) {
			continue
		}
		if a.Label.IsRegular() {
			arcs = append(arcs, a.ToDataAll(ctx))
		}
	}
	w := *v
	w.state = nil
	w.status = finalized

	w.BaseValue = toDataAll(ctx, w.BaseValue)
	w.Arcs = arcs
	w.isData = true
	w.Conjuncts = slices.Clone(v.Conjuncts)

	// Converting to dat drops constraints and non-regular fields. This means
	// that the domain on which they are defined is reduced, which will change
	// closedness properties. We therefore remove closedness. Note that data,
	// in general and JSON specifically, is not closed.
	w.ClosedRecursive = false
	w.ClosedNonRecursive = false

	// TODO(perf): this is not strictly necessary for evaluation, but it can
	// hurt performance greatly. Drawback is that it may disable ordering.
	for _, s := range w.Structs {
		s.Disable = true
	}
	for i, c := range w.Conjuncts {
		if v, _ := c.x.(Value); v != nil {
			w.Conjuncts[i].x = toDataAll(ctx, v).(Value)
		}
	}
	return &w
}

func toDataAll(ctx *OpContext, v BaseValue) BaseValue {
	switch x := v.(type) {
	default:
		return x

	case *Vertex:
		return x.ToDataAll(ctx)

	case *Disjunction:
		d := *x
		values := x.Values
		// Data mode involves taking default values and if there is an
		// unambiguous default value, we should convert that to data as well.
		switch x.NumDefaults {
		case 0:
		case 1:
			return toDataAll(ctx, values[0])
		default:
			values = values[:x.NumDefaults]
		}
		d.Values = make([]Value, len(values))
		for i, v := range values {
			switch x := v.(type) {
			case *Vertex:
				d.Values[i] = x.ToDataAll(ctx)
			default:
				d.Values[i] = x
			}
		}
		return &d

	case *Conjunction:
		c := *x
		c.Values = make([]Value, len(x.Values))
		for i, v := range x.Values {
			// This case is okay because the source is of type Value.
			c.Values[i] = toDataAll(ctx, v).(Value)
		}
		return &c
	}
}

// IsFinal reports whether value v can still become more specific, when only
// considering regular fields.
//
// TODO: move this functionality as a method on cue.Value.
func IsFinal(v Value) bool {
	return isFinal(v, false)
}

func isFinal(v Value, isClosed bool) bool {
	switch x := v.(type) {
	case *Vertex:
		closed := isClosed || x.ClosedNonRecursive || x.ClosedRecursive

		// TODO(evalv3): this is for V2 compatibility. Remove once V2 is gone.
		closed = closed || x.IsClosedList() || x.IsClosedStruct()

		// This also dereferences the value.
		if v, ok := x.BaseValue.(Value); ok {
			return isFinal(v, closed)
		}

		// If it is not closed, it can still become more specific.
		if !closed {
			return false
		}

		for _, a := range x.Arcs {
			if !a.Label.IsRegular() {
				continue
			}
			if a.ArcType > ArcMember && !a.IsErr() {
				return false
			}
			if !isFinal(a, false) {
				return false
			}
		}
		return true

	case *Bottom:
		// Incomplete errors could be resolved by making a struct more specific.
		return x.Code <= StructuralCycleError

	default:
		return v.Concreteness() <= Concrete
	}
}

// func (v *Vertex) IsEvaluating() bool {
// 	return v.Value == cycle
// }

// IsErr is a convenience function to check whether a Vertex represents an
// error currently. It does not finalize the value, so it is possible that
// v may become erroneous after this call.
func (v *Vertex) IsErr() bool {
	// if v.Status() > Evaluating {
	return v.Bottom() != nil
}

// Err finalizes v, if it isn't yet, and returns an error if v evaluates to an
// error or nil otherwise.
func (v *Vertex) Err(c *OpContext) *Bottom {
	v.Finalize(c)
	return v.Bottom()
}

// Bottom reports whether v is currently erroneous It does not finalize the
// value, so it is possible that v may become erroneous after this call.
func (v *Vertex) Bottom() *Bottom {
	// TODO: should we consider errors recorded in the state?
	v = v.DerefValue()
	if b, ok := v.BaseValue.(*Bottom); ok {
		return b
	}
	return nil
}

// func (v *Vertex) Evaluate()

func (v *Vertex) Finalize(c *OpContext) {
	// Saving and restoring the error context prevents v from panicking in
	// case the caller did not handle existing errors in the context.
	err := c.errs
	c.errs = nil
	c.unify(v, final(finalized, allKnown))
	c.errs = err
}

// CompleteArcs ensures the set of arcs has been computed.
func (v *Vertex) CompleteArcs(c *OpContext) {
	c.unify(v, final(conjuncts, allKnown))
}

func (v *Vertex) CompleteArcsOnly(c *OpContext) {
	c.unify(v, final(conjuncts, fieldSetKnown))
}

func (v *Vertex) AddErr(ctx *OpContext, b *Bottom) {
	v.SetValue(ctx, CombineErrors(nil, v.Value(), b))
}

// SetValue sets the value of a node.
func (v *Vertex) SetValue(ctx *OpContext, value BaseValue) *Bottom {
	return v.setValue(ctx, finalized, value)
}

func (v *Vertex) setValue(ctx *OpContext, state vertexStatus, value BaseValue) *Bottom {
	v.BaseValue = value
	// TODO: should not set status here for new evaluator.
	v.updateStatus(state)
	return nil
}

func (n *nodeContext) setBaseValue(value BaseValue) {
	n.node.BaseValue = value
}

// swapBaseValue swaps the BaseValue of a node with the given value and returns
// the previous value.
func (n *nodeContext) swapBaseValue(value BaseValue) (saved BaseValue) {
	saved = n.node.BaseValue
	n.setBaseValue(value)
	return saved
}

// ToVertex wraps v in a new Vertex, if necessary.
func ToVertex(v Value) *Vertex {
	switch x := v.(type) {
	case *Vertex:
		return x
	default:
		n := &Vertex{
			status:    finalized,
			BaseValue: x,
		}
		n.AddConjunct(MakeRootConjunct(nil, v))
		return n
	}
}

// Unwrap returns the possibly non-concrete scalar value of v, v itself for
// lists and structs, or nil if v is an undefined type.
func Unwrap(v Value) Value {
	x, ok := v.(*Vertex)
	if !ok {
		return v
	}
	// TODO(deref): BaseValue is currently overloaded to track cycles as well
	// as the actual or dereferenced value. Once the old evaluator can be
	// removed, we should use the new cycle tracking mechanism for cycle
	// detection and keep BaseValue clean.
	x = x.DerefValue()
	if n := x.state; n != nil && isCyclePlaceholder(x.BaseValue) {
		if n.errs != nil && !n.errs.IsIncomplete() {
			return n.errs
		}
		if n.scalar != nil {
			return n.scalar
		}
	}
	return x.Value()
}

// OptionalType is a bit field of the type of optional constraints in use by an
// Acceptor.
type OptionalType int8

const (
	HasField          OptionalType = 1 << iota // X: T
	HasDynamic                                 // (X): T or "\(X)": T
	HasPattern                                 // [X]: T
	HasComplexPattern                          // anything but a basic type
	HasAdditional                              // ...T
	IsOpen                                     // Defined for all fields
)

func (v *Vertex) Kind() Kind {
	// This is possible when evaluating comprehensions. It is potentially
	// not known at this time what the type is.
	switch {
	case v.state != nil && v.state.kind == BottomKind:
		return BottomKind
	case v.BaseValue != nil && !isCyclePlaceholder(v.BaseValue):
		return v.BaseValue.Kind()
	case v.state != nil:
		return v.state.kind
	default:
		return TopKind
	}
}

func (v *Vertex) OptionalTypes() OptionalType {
	var mask OptionalType
	for _, s := range v.Structs {
		mask |= s.OptionalTypes()
	}
	return mask
}

// IsOptional reports whether a field is explicitly defined as optional,
// as opposed to whether it is allowed by a pattern constraint.
func (v *Vertex) IsOptional(label Feature) bool {
	for _, a := range v.Arcs {
		if a.Label == label {
			return a.IsConstraint()
		}
	}
	return false
}

func (v *Vertex) accepts(ok, required bool) bool {
	return ok || (!required && !v.ClosedRecursive)
}

func (v *Vertex) IsClosedStruct() bool {
	// TODO: uncomment this. This fixes a bunch of closedness bugs
	// in the old and new evaluator. For compability sake, though, we
	// keep it as is for now.
	// if v.Closed {
	// 	return true
	// }
	// if v.HasEllipsis {
	// 	return false
	// }
	switch x := v.BaseValue.(type) {
	default:
		return false

	case *Vertex:
		return v.ClosedRecursive && !v.HasEllipsis

	case *StructMarker:
		if x.NeedClose {
			return true
		}

	case *Disjunction:
	}
	return isClosed(v)
}

func (v *Vertex) IsClosedList() bool {
	if x, ok := v.BaseValue.(*ListMarker); ok {
		return !x.IsOpen
	}
	return false
}

// TODO: return error instead of boolean? (or at least have version that does.)
func (v *Vertex) Accept(ctx *OpContext, f Feature) bool {
	// TODO(#543): remove this check.
	if f.IsDef() {
		return true
	}

	if f.IsHidden() || f.IsLet() {
		return true
	}

	// TODO(deref): right now a dereferenced value holds all the necessary
	// closedness information. In the future we may want to allow sharing nodes
	// with different closedness information. In that case, we should reconsider
	// the use of this dereference. Consider, for instance:
	//
	//     #a: b     // this node is currently not shared, but could be.
	//     b: {c: 1}
	v = v.DerefValue()
	if x, ok := v.BaseValue.(*Disjunction); ok {
		for _, v := range x.Values {
			if x, ok := v.(*Vertex); ok && x.Accept(ctx, f) {
				return true
			}
		}
		return false
	}

	if f.IsInt() {
		switch v.BaseValue.(type) {
		case *ListMarker:
			// TODO(perf): use precomputed length.
			if f.Index() < len(v.Elems()) {
				return true
			}
			return !v.IsClosedList()

		default:
			return v.Kind()&ListKind != 0
		}
	}

	if k := v.Kind(); k&StructKind == 0 && f.IsString() {
		// If the value is bottom, we may not really know if this used to
		// be a struct.
		if k != BottomKind || len(v.Structs) == 0 {
			return false
		}
	}

	// TODO: move this check to IsClosedStruct. Right now this causes too many
	// changes in the debug output, and it also appears to be not entirely
	// correct.
	if v.HasEllipsis {
		return true

	}

	if !v.IsClosedStruct() || v.Lookup(f) != nil {
		return true
	}

	// TODO(perf): collect positions in error.
	defer ctx.ReleasePositions(ctx.MarkPositions())

	return v.accepts(Accept(ctx, v, f))
}

// MatchAndInsert finds the conjuncts for optional fields, pattern
// constraints, and additional constraints that match f and inserts them in
// arc. Use f is 0 to match all additional constraints only.
func (v *Vertex) MatchAndInsert(ctx *OpContext, arc *Vertex) {
	if !v.Accept(ctx, arc.Label) {
		return
	}

	// Go backwards to simulate old implementation.
	for i := len(v.Structs) - 1; i >= 0; i-- {
		s := v.Structs[i]
		if s.Disable {
			continue
		}
		s.MatchAndInsert(ctx, arc)
	}

	// This is the equivalent for the new implementation.
	if pcs := v.PatternConstraints; pcs != nil {
		for _, pc := range pcs.Pairs {
			if matchPattern(ctx, pc.Pattern, arc.Label) {
				for _, c := range pc.Constraint.Conjuncts {
					env := *(c.Env)
					if arc.Label.Index() < MaxIndex {
						env.DynamicLabel = arc.Label
					}
					c.Env = &env

					root := arc.rootCloseContext(ctx)
					root.insertConjunct(ctx, root, c, c.CloseInfo, ArcMember, true, false)
				}
			}
		}
	}
}

func (v *Vertex) IsList() bool {
	_, ok := v.BaseValue.(*ListMarker)
	return ok
}

// Lookup returns the Arc with label f if it exists or nil otherwise.
func (v *Vertex) Lookup(f Feature) *Vertex {
	for _, a := range v.Arcs {
		if a.Label == f {
			// TODO(P1)/TODO(deref): this indirection should ultimately be
			// eliminated: the original node may have useful information (like
			// original conjuncts) that are eliminated after indirection. We
			// should leave it up to the user of Lookup at what point an
			// indirection is necessary.
			a = a.DerefValue()
			return a
		}
	}
	return nil
}

// LookupRaw returns the Arc with label f if it exists or nil otherwise.
//
// TODO: with the introduction of structure sharing, it is not always correct
// to indirect the arc. At the very least, this discards potential useful
// information. We introduce LookupRaw to avoid having to delete the
// information. Ultimately, this should become Lookup, or better, we should
// have a higher-level API for accessing values.
func (v *Vertex) LookupRaw(f Feature) *Vertex {
	for _, a := range v.Arcs {
		if a.Label == f {
			return a
		}
	}
	return nil
}

// Elems returns the regular elements of a list.
func (v *Vertex) Elems() []*Vertex {
	// TODO: add bookkeeping for where list arcs start and end.
	a := make([]*Vertex, 0, len(v.Arcs))
	for _, x := range v.Arcs {
		if x.Label.IsInt() {
			a = append(a, x)
		}
	}
	return a
}

func (v *Vertex) Init(c *OpContext) {
	v.getState(c)
}

// GetArc returns a Vertex for the outgoing arc with label f. It creates and
// ads one if it doesn't yet exist.
func (v *Vertex) GetArc(c *OpContext, f Feature, t ArcType) (arc *Vertex, isNew bool) {
	arc = v.Lookup(f)
	if arc != nil {
		arc.updateArcType(t)
		return arc, false
	}

	if c.isDevVersion() {
		return nil, false
	}

	if v.LockArcs {
		// TODO(errors): add positions.
		if f.IsInt() {
			c.addErrf(EvalError, token.NoPos,
				"element at index %v not allowed by earlier comprehension or reference cycle", f)
		} else {
			c.addErrf(EvalError, token.NoPos,
				"field %v not allowed by earlier comprehension or reference cycle", f)
		}
	}
	// TODO: consider setting Dynamic here from parent.
	arc = &Vertex{
		Parent:    v,
		Label:     f,
		ArcType:   t,
		nonRooted: v.IsDynamic || v.Label.IsLet() || v.nonRooted,
		anonymous: v.anonymous || v.Label.IsLet(),
	}
	v.Arcs = append(v.Arcs, arc)
	if t == ArcPending {
		v.hasPendingArc = true
	}
	return arc, true
}

func (v *Vertex) Source() ast.Node {
	if v != nil {
		if b, ok := v.BaseValue.(Value); ok {
			return b.Source()
		}
	}
	return nil
}

// InsertConjunct is a low-level method to insert a conjunct into a Vertex.
// It should only be used by the compiler. It does not consider any logic
// that is necessary if a conjunct is added to a Vertex that is already being
// evaluated.
func (v *Vertex) InsertConjunct(c Conjunct) {
	v.Conjuncts = append(v.Conjuncts, c)
}

// InsertConjunctsFrom is a low-level method to insert a conjuncts into a Vertex
// from another Vertex.
func (v *Vertex) InsertConjunctsFrom(w *Vertex) {
	v.Conjuncts = append(v.Conjuncts, w.Conjuncts...)
}

// AddConjunct adds the given Conjuncts to v if it doesn't already exist.
func (v *Vertex) AddConjunct(c Conjunct) *Bottom {
	if v.BaseValue != nil && !isCyclePlaceholder(v.BaseValue) {
		// TODO: investigate why this happens at all. Removing it seems to
		// change the order of fields in some cases.
		//
		// This is likely a bug in the evaluator and should not happen.
		return &Bottom{
			Err:  errors.Newf(token.NoPos, "cannot add conjunct"),
			Node: v,
		}
	}
	if !v.hasConjunct(c) {
		v.addConjunctUnchecked(c)
	}
	return nil
}

func (v *Vertex) hasConjunct(c Conjunct) (added bool) {
	switch f := c.x.(type) {
	case *BulkOptionalField, *Ellipsis:
	case *Field:
		v.updateArcType(f.ArcType)
	case *DynamicField:
		v.updateArcType(f.ArcType)
	default:
		v.ArcType = ArcMember
	}
	return findConjunct(v.Conjuncts, c) >= 0
}

// findConjunct reports the position of c within cs or -1 if it is not found.
//
// NOTE: we are not comparing closeContexts. The intended use of this function
// is only to add to list of conjuncts within a closeContext.
func findConjunct(cs []Conjunct, c Conjunct) int {
	for i, x := range cs {
		// TODO: disregard certain fields from comparison (e.g. Refs)?
		if x.CloseInfo.closeInfo == c.CloseInfo.closeInfo && // V2
			x.x == c.x &&
			x.Env.Up == c.Env.Up && x.Env.Vertex == c.Env.Vertex {
			return i
		}
	}
	return -1
}

func (n *nodeContext) addConjunction(c Conjunct, index int) {
	unreachableForDev(n.ctx)

	// NOTE: This does not split binary expressions for comprehensions.
	// TODO: split for comprehensions and rewrap?
	if x, ok := c.Elem().(*BinaryExpr); ok && x.Op == AndOp {
		c.x = x.X
		n.conjuncts = append(n.conjuncts, conjunct{C: c, index: index})
		c.x = x.Y
		n.conjuncts = append(n.conjuncts, conjunct{C: c, index: index})
	} else {
		n.conjuncts = append(n.conjuncts, conjunct{C: c, index: index})
	}
}

func (v *Vertex) addConjunctUnchecked(c Conjunct) {
	index := len(v.Conjuncts)
	v.Conjuncts = append(v.Conjuncts, c)
	if n := v.state; n != nil && !n.ctx.isDevVersion() {
		// TODO(notify): consider this as a central place to send out
		// notifications. At the moment this is not necessary, but it may
		// be if we move the notification mechanism outside of the path of
		// running tasks.
		n.addConjunction(c, index)

		// TODO: can we remove notifyConjunct here? This method is only
		// used if either Unprocessed is 0, in which case there will be no
		// notification recipients, or for "pushed down" comprehensions,
		// which should also have been added at an earlier point.
		n.notifyConjunct(c)
	}
}

// addConjunctDynamic adds a conjunct to a vertex and immediately evaluates
// it, whilst doing the same for any vertices on the notify list, recursively.
func (n *nodeContext) addConjunctDynamic(c Conjunct) {
	unreachableForDev(n.ctx)

	n.node.Conjuncts = append(n.node.Conjuncts, c)
	n.addExprConjunct(c, partial)
	n.notifyConjunct(c)

}

func (n *nodeContext) notifyConjunct(c Conjunct) {
	unreachableForDev(n.ctx)

	for _, rec := range n.notify {
		arc := rec.v
		if !arc.hasConjunct(c) {
			if arc.state == nil {
				// TODO: continuing here is likely to result in a faulty
				// (incomplete) configuration. But this may be okay. The
				// CUE_DEBUG=0 flag disables this assertion.
				n.ctx.Assertf(n.ctx.pos(), !n.ctx.Strict, "unexpected nil state")
				n.ctx.addErrf(0, n.ctx.pos(), "cannot add to field %v", arc.Label)
				continue
			}
			arc.state.addConjunctDynamic(c)
		}
	}
}

func (v *Vertex) AddStruct(s *StructLit, env *Environment, ci CloseInfo) *StructInfo {
	info := StructInfo{
		StructLit: s,
		Env:       env,
		CloseInfo: ci,
	}
	if env.Vertex != nil {
		// be careful to avoid promotion of nil env.Vertex to non-nil
		// info.Decl
		info.Decl = env.Vertex
	}
	if cc := ci.cc; cc != nil && cc.decl != nil {
		info.Decl = cc.decl
	} else if ci := ci.closeInfo; ci != nil && ci.decl != nil {
		info.Decl = ci.decl
	}
	for _, t := range v.Structs {
		if *t == info { // TODO: check for different identity.
			return t
		}
	}
	t := &info
	v.Structs = append(v.Structs, t)
	return t
}

// Path computes the sequence of Features leading from the root to of the
// instance to this Vertex.
//
// NOTE: this is for debugging purposes only.
func (v *Vertex) Path() []Feature {
	return appendPath(nil, v)
}

func appendPath(a []Feature, v *Vertex) []Feature {
	if v.Parent == nil {
		return a
	}
	a = appendPath(a, v.Parent)
	// Skip if the node is a structure-shared node that has been assingned to
	// the parent as it's new location: in this case the parent node will
	// have the desired label.
	if v.Label != 0 && v.Parent.BaseValue != v {
		// A Label may be 0 for programmatically inserted nodes.
		a = append(a, v.Label)
	}
	return a
}

// A Conjunct is an Environment-Expr pair. The Environment is the starting
// point for reference lookup for any reference contained in X.
type Conjunct struct {
	Env *Environment
	x   Node

	// CloseInfo is a unique number that tracks a group of conjuncts that need
	// belong to a single originating definition.
	CloseInfo CloseInfo
}

// MakeConjunct creates a conjunct from current Environment and CloseInfo of c.
func (c *OpContext) MakeConjunct(x Expr) Conjunct {
	return MakeConjunct(c.e, x, c.ci)
}

// TODO(perf): replace with composite literal if this helps performance.

// MakeRootConjunct creates a conjunct from the given environment and node.
// It panics if x cannot be used as an expression.
func MakeRootConjunct(env *Environment, x Node) Conjunct {
	return MakeConjunct(env, x, CloseInfo{})
}

func MakeConjunct(env *Environment, x Node, id CloseInfo) Conjunct {
	if env == nil {
		// TODO: better is to pass one.
		env = &Environment{}
	}
	switch x.(type) {
	case Elem, interface{ expr() Expr }:
	default:
		panic(fmt.Sprintf("invalid Node type %T", x))
	}
	return Conjunct{env, x, id}
}

func (c *Conjunct) Source() ast.Node {
	return c.x.Source()
}

func (c *Conjunct) Field() Node {
	switch x := c.x.(type) {
	case *Comprehension:
		return x.Value
	default:
		return c.x
	}
}

// Elem retrieves the Elem form of the contained conjunct.
// If it is a Field, it will return the field value.
func (c Conjunct) Elem() Elem {
	switch x := c.x.(type) {
	case interface{ expr() Expr }:
		return x.expr()
	case Elem:
		return x
	default:
		panic("unreachable")
	}
}

// Expr retrieves the expression form of the contained conjunct. If it is a
// field or comprehension, it will return its associated value. This is only to
// be used for syntactic operations where evaluation of the expression is not
// required. To get an expression paired with the correct environment, use
// EnvExpr.
//
// TODO: rename to RawExpr.
func (c *Conjunct) Expr() Expr {
	return ToExpr(c.x)
}

// EnvExpr returns the expression form of the contained conjunct alongside an
// Environment in which this expression should be evaluated.
func (c Conjunct) EnvExpr() (*Environment, Expr) {
	return EnvExpr(c.Env, c.Elem())
}

// EnvExpr returns the expression represented by Elem alongside an Environment
// with the necessary adjustments in which the resulting expression can be
// evaluated.
func EnvExpr(env *Environment, elem Elem) (*Environment, Expr) {
	for {
		switch x := elem.(type) {
		case *ConjunctGroup:
			if len(*x) == 1 {
				c := (*x)[0]
				env = c.Env
				elem = c.Elem()
				continue
			}
		case *Comprehension:
			env = linkChildren(env, x)
			c := MakeConjunct(env, x.Value, CloseInfo{})
			elem = c.Elem()
			continue
		}
		break
	}
	return env, ToExpr(elem)
}

// ToExpr extracts the underlying expression for a Node. If something is already
// an Expr, it will return it as is, if it is a field, it will return its value,
// and for comprehensions it returns the yielded struct.
func ToExpr(n Node) Expr {
	for {
		switch x := n.(type) {
		case *ConjunctGroup:
			if len(*x) != 1 {
				return x
			}
			n = (*x)[0].x
		case Expr:
			return x
		case interface{ expr() Expr }:
			n = x.expr()
		case *Comprehension:
			n = x.Value
		default:
			panic("unreachable")
		}
	}
}