1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
|
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
import (
"fmt"
"slices"
"cuelang.org/go/cue/ast"
"cuelang.org/go/cue/errors"
"cuelang.org/go/cue/token"
)
// TODO: unanswered questions about structural cycles:
//
// 1. When detecting a structural cycle, should we consider this as:
// a) an unevaluated value,
// b) an incomplete error (which does not affect parent validity), or
// c) a special value.
//
// Making it an error is the simplest way to ensure reentrancy is disallowed:
// without an error it would require an additional mechanism to stop reentrancy
// from continuing to process. Even worse, in some cases it may only partially
// evaluate, resulting in unexpected results. For this reason, we are taking
// approach `b` for now.
//
// This has some consequences of how disjunctions are treated though. Consider
//
// list: {
// head: _
// tail: list | null
// }
//
// When making it an error, evaluating the above will result in
//
// list: {
// head: _
// tail: null
// }
//
// because list will result in a structural cycle, and thus an error, it will be
// stripped from the disjunction. This may or may not be a desirable property. A
// nice thing is that it is not required to write `list | *null`. A disadvantage
// is that this is perhaps somewhat inexplicit.
//
// When not making it an error (and simply cease evaluating child arcs upon
// cycle detection), the result would be:
//
// list: {
// head: _
// tail: list | null
// }
//
// In other words, an evaluation would result in a cycle and thus an error.
// Implementations can recognize such cases by having unevaluated arcs. An
// explicit structure cycle marker would probably be less error prone.
//
// Note that in both cases, a reference to list will still use the original
// conjuncts, so the result will be the same for either method in this case.
//
//
// 2. Structural cycle allowance.
//
// Structural cycle detection disallows reentrancy as well. This means one
// cannot use structs for recursive computation. This will probably preclude
// evaluation of some configuration. Given that there is no real alternative
// yet, we could allow structural cycle detection to be optionally disabled.
// An Environment links the parent scopes for identifier lookup to a composite
// node. Each conjunct that make up node in the tree can be associated with
// a different environment (although some conjuncts may share an Environment).
type Environment struct {
Up *Environment
Vertex *Vertex
// DynamicLabel is only set when instantiating a field from a pattern
// constraint. It is used to resolve label references.
DynamicLabel Feature
// TODO(perf): make the following public fields a shareable struct as it
// mostly is going to be the same for child nodes.
// TODO: This can probably move into the nodeContext, making it a map from
// conjunct to Value.
cache map[cacheKey]Value
}
type cacheKey struct {
Expr Expr
Arc *Vertex
}
func (e *Environment) up(ctx *OpContext, count int32) *Environment {
for i := int32(0); i < count; i++ {
e = e.Up
ctx.Assertf(ctx.Pos(), e.Vertex != nil, "Environment.up encountered a nil vertex")
}
return e
}
type ID int32
// evalCached is used to look up dynamic field pattern constraint expressions.
func (e *Environment) evalCached(c *OpContext, x Expr) Value {
if v, ok := x.(Value); ok {
return v
}
key := cacheKey{x, nil}
v, ok := e.cache[key]
if !ok {
if e.cache == nil {
e.cache = map[cacheKey]Value{}
}
env, src := c.e, c.src
c.e, c.src = e, x.Source()
// Save and restore errors to ensure that only relevant errors are
// associated with the cash.
err := c.errs
v = c.evalState(x, require(partial, allKnown)) // TODO: should this be finalized?
c.e, c.src = env, src
c.errs = err
if b, ok := v.(*Bottom); !ok || !b.IsIncomplete() {
e.cache[key] = v
}
}
return v
}
// A Vertex is a node in the value tree. It may be a leaf or internal node.
// It may have arcs to represent elements of a fully evaluated struct or list.
//
// For structs, it only contains definitions and concrete fields.
// optional fields are dropped.
//
// It maintains source information such as a list of conjuncts that contributed
// to the value.
type Vertex struct {
// Parent links to a parent Vertex. This parent should only be used to
// access the parent's Label field to find the relative location within a
// tree.
Parent *Vertex
// State:
// eval: nil, BaseValue: nil -- unevaluated
// eval: *, BaseValue: nil -- evaluating
// eval: *, BaseValue: * -- finalized
//
state *nodeContext
// _cc manages the closedness logic for this Vertex. It is created
// by rootCloseContext.
// TODO: move back to nodeContext, but be sure not to clone it.
_cc *closeContext
// Label is the feature leading to this vertex.
Label Feature
// TODO: move the following fields to nodeContext.
// status indicates the evaluation progress of this vertex.
status vertexStatus
// hasAllConjuncts indicates that the set of conjuncts is complete.
// This is the case if the conjuncts of all its ancestors have been
// processed.
hasAllConjuncts bool
// isData indicates that this Vertex is to be interpreted as data: pattern
// and additional constraints, as well as optional fields, should be
// ignored.
isData bool
// ClosedRecursive indicates whether this Vertex is recursively closed.
// This is the case, for instance, if it is a node in a definition or if one
// of the conjuncts, or ancestor conjuncts, is a definition.
ClosedRecursive bool
// ClosedNonRecursive indicates that this Vertex has been closed for this
// level only. This supports the close builtin.
ClosedNonRecursive bool
// HasEllipsis indicates that this Vertex is open by means of an ellipsis.
// TODO: combine this field with Closed once we removed the old evaluator.
HasEllipsis bool
// MultiLet indicates whether multiple let fields were added from
// different sources. If true, a LetReference must be resolved using
// the per-Environment value cache.
MultiLet bool
// After this is set, no more arcs may be added during evaluation. This is
// set, for instance, after a Vertex is used as a source for comprehensions,
// or any other operation that relies on the set of arcs being constant.
LockArcs bool
// IsDynamic signifies whether this struct is computed as part of an
// expression and not part of the static evaluation tree.
// Used for cycle detection.
IsDynamic bool
// IsPatternConstraint indicates that this Vertex is an entry in
// Vertex.PatternConstraints.
IsPatternConstraint bool
// nonRooted indicates that this Vertex originates within the context of
// a dynamic, or inlined, Vertex (e.g. `{out: ...}.out``). Note that,
// through reappropriation, this Vertex may become rooted down the line.
// Use the !IsDetached method to determine whether this Vertex became
// rooted.
nonRooted bool // indicates that there is no path from the root of the tree.
// anonymous indicates that this Vertex is being computed within a
// addressable context, or in other words, a context for which there is
// a path from the root of the file. Typically, the only addressable
// contexts are fields. Examples of fields that are not addressable are
// the for source of comprehensions and let fields or let clauses.
anonymous bool
// hasPendingArc is set if this Vertex has a void arc (e.g. for comprehensions)
hasPendingArc bool
// IsDisjunct indicates this Vertex is a disjunct resulting from a
// disjunction evaluation.
IsDisjunct bool
// IsShared is true if BaseValue holds a Vertex of a node of another path.
// If a node is shared, the user should be careful with traversal.
// The debug printer, for instance, takes extra care not to print in a loop.
IsShared bool
// IsCyclic is true if a node is cyclic, for instance if its value is
// a cyclic reference to a shared node or if the value is a conjunction
// of which at least one value is cyclic (not yet supported).
IsCyclic bool
// ArcType indicates the level of optionality of this arc.
ArcType ArcType
// cyclicReferences is a linked list of internal references pointing to this
// Vertex. This is used to shorten the path of some structural cycles.
cyclicReferences *RefNode
// BaseValue is the value associated with this vertex. For lists and structs
// this is a sentinel value indicating its kind.
BaseValue BaseValue
// ChildErrors is the collection of all errors of children.
ChildErrors *Bottom
// The parent of nodes can be followed to determine the path within the
// configuration of this node.
// Value Value
Arcs []*Vertex // arcs are sorted in display order.
// PatternConstraints are additional constraints that match more nodes.
// Constraints that match existing Arcs already have their conjuncts
// mixed in.
// TODO: either put in StructMarker/ListMarker or integrate with Arcs
// so that this pointer is unnecessary.
PatternConstraints *Constraints
// Conjuncts lists the structs that ultimately formed this Composite value.
// This includes all selected disjuncts.
//
// This value may be nil, in which case the Arcs are considered to define
// the final value of this Vertex.
//
// TODO: all access to Conjuncts should go through functions like
// VisitLeafConjuncts and VisitAllConjuncts. We should probably make this
// an unexported field.
Conjuncts ConjunctGroup
// Structs is a slice of struct literals that contributed to this value.
// This information is used to compute the topological sort of arcs.
Structs []*StructInfo
}
func deref(v *Vertex) *Vertex {
v = v.DerefValue()
n := v.state
if n != nil {
v = n.underlying
}
if v == nil {
panic("unexpected nil underlying with non-nil state")
}
return v
}
func equalDeref(a, b *Vertex) bool {
return deref(a) == deref(b)
}
func (v *Vertex) cc() *closeContext {
return v._cc
}
// rootCloseContext creates a closeContext for this Vertex or returns the
// existing one.
func (v *Vertex) rootCloseContext(ctx *OpContext) *closeContext {
if v._cc == nil {
v._cc = &closeContext{
group: &v.Conjuncts,
parent: nil,
src: v,
parentConjuncts: v,
decl: v,
}
v._cc.incDependent(ctx, ROOT, nil) // matched in REF(decrement:nodeDone)
}
if p := v.Parent; p != nil {
pcc := p.rootCloseContext(ctx)
v._cc.depth = pcc.depth + 1
}
return v._cc
}
// newInlineVertex creates a Vertex that is needed for computation, but for
// which there is no CUE path defined from the root Vertex.
func (ctx *OpContext) newInlineVertex(parent *Vertex, v BaseValue, a ...Conjunct) *Vertex {
n := &Vertex{
BaseValue: v,
IsDynamic: true,
ArcType: ArcMember,
Conjuncts: a,
}
if !ctx.isDevVersion() {
n.Parent = parent
}
if ctx.inDetached > 0 {
n.anonymous = true
}
return n
}
// updateArcType updates v.ArcType if t is more restrictive.
func (v *Vertex) updateArcType(t ArcType) {
if t >= v.ArcType {
return
}
if v.ArcType == ArcNotPresent {
return
}
s := v.state
// NOTE: this condition does not occur in V2.
if s != nil && v.isFinal() {
c := s.ctx
if s.scheduler.frozen.meets(arcTypeKnown) {
p := token.NoPos
if src := c.Source(); src != nil {
p = src.Pos()
}
parent := v.Parent
parent.reportFieldCycleError(c, p, v.Label)
return
}
}
if v.Parent != nil && v.Parent.ArcType == ArcPending && v.Parent.state != nil && v.Parent.state.ctx.isDevVersion() {
// TODO: check that state is always non-nil.
v.Parent.state.unshare()
}
v.ArcType = t
}
// isDefined indicates whether this arc is a "value" field, and not a constraint
// or void arc.
func (v *Vertex) isDefined() bool {
return v.ArcType == ArcMember
}
// IsConstraint reports whether the Vertex is an optional or required field.
func (v *Vertex) IsConstraint() bool {
return v.ArcType == ArcOptional || v.ArcType == ArcRequired
}
// IsDefined indicates whether this arc is defined meaning it is not a
// required or optional constraint and not a "void" arc.
// It will evaluate the arc, and thus evaluate any comprehension, to make this
// determination.
func (v *Vertex) IsDefined(c *OpContext) bool {
if v.isDefined() {
return true
}
v.Finalize(c)
return v.isDefined()
}
// Rooted reports if it is known there is a path from the root of the tree to
// this Vertex. If this returns false, it may still be rooted if the node
// originated from an inline struct, but was later reappropriated.
func (v *Vertex) Rooted() bool {
return !v.nonRooted && !v.Label.IsLet() && !v.IsDynamic
}
// IsDetached reports whether this Vertex does not have a path from the root.
func (v *Vertex) IsDetached() bool {
// v might have resulted from an inline struct that was subsequently shared.
// In this case, it is still rooted.
for v != nil {
if v.Rooted() {
return false
}
// Already take into account the provisionally assigned parent.
if v.state != nil && v.state.parent != nil {
v = v.state.parent
} else {
v = v.Parent
}
}
return true
}
// MayAttach reports whether this Vertex may attach to another arc.
// The behavior is undefined if IsDetached is true.
func (v *Vertex) MayAttach() bool {
return !v.Label.IsLet() && !v.anonymous
}
type ArcType uint8
const (
// ArcMember means that this arc is a normal non-optional field
// (including regular, hidden, and definition fields).
ArcMember ArcType = iota
// ArcRequired is like optional, but requires that a field be specified.
// Fields are of the form foo!.
ArcRequired
// ArcOptional represents fields of the form foo? and defines constraints
// for foo in case it is defined.
ArcOptional
// ArcPending means that it is not known yet whether an arc exists and that
// its conjuncts need to be processed to find out. This happens when an arc
// is provisionally added as part of a comprehension, but when this
// comprehension has not yet yielded any results.
ArcPending
// ArcNotPresent indicates that this arc is not present and, unlike
// ArcPending, needs no further processing.
ArcNotPresent
// TODO: define a type for optional arcs. This will be needed for pulling
// in optional fields into the Vertex, which, in turn, is needed for
// structure sharing, among other things.
// We could also define types for required fields and potentially lets.
)
func (a ArcType) String() string {
switch a {
case ArcMember:
return "Member"
case ArcOptional:
return "Optional"
case ArcRequired:
return "Required"
case ArcPending:
return "Pending"
case ArcNotPresent:
return "NotPresent"
}
return fmt.Sprintf("ArcType(%d)", a)
}
// definitelyExists reports whether an arc is a constraint or member arc.
// TODO: we should check that users of this call ensure there are no
// ArcPendings.
func (v *Vertex) definitelyExists() bool {
return v.ArcType < ArcPending
}
// ConstraintFromToken converts a given AST constraint token to the
// corresponding ArcType.
func ConstraintFromToken(t token.Token) ArcType {
switch t {
case token.OPTION:
return ArcOptional
case token.NOT:
return ArcRequired
}
return ArcMember
}
// Token reports the token corresponding to the constraint represented by a,
// or token.ILLEGAL otherwise.
func (a ArcType) Token() (t token.Token) {
switch a {
case ArcOptional:
t = token.OPTION
case ArcRequired:
t = token.NOT
}
return t
}
// Suffix reports the field suffix for the given ArcType if it is a
// constraint or the empty string otherwise.
func (a ArcType) Suffix() string {
switch a {
case ArcOptional:
return "?"
case ArcRequired:
return "!"
// For debugging internal state. This is not CUE syntax.
case ArcPending:
return "*"
case ArcNotPresent:
return "-"
}
return ""
}
func (v *Vertex) Clone() *Vertex {
c := *v
c.state = nil
return &c
}
type StructInfo struct {
*StructLit
Env *Environment
CloseInfo
// Embed indicates the struct in which this struct is embedded (originally),
// or nil if this is a root structure.
// Embed *StructInfo
// Context *RefInfo // the location from which this struct originates.
Disable bool
Embedding bool
// Decl contains this Struct
Decl Decl
}
// TODO(perf): this could be much more aggressive for eliminating structs that
// are immaterial for closing.
func (s *StructInfo) useForAccept() bool {
if c := s.closeInfo; c != nil {
return !c.noCheck
}
return true
}
// vertexStatus indicates the evaluation progress of a Vertex.
type vertexStatus int8
//go:generate go run golang.org/x/tools/cmd/stringer -type=vertexStatus
const (
// unprocessed indicates a Vertex has not been processed before.
// Value must be nil.
unprocessed vertexStatus = iota
// evaluating means that the current Vertex is being evaluated. If this is
// encountered it indicates a reference cycle. Value must be nil.
evaluating
// partial indicates that the result was only partially evaluated. It will
// need to be fully evaluated to get a complete results.
//
// TODO: this currently requires a renewed computation. Cache the
// nodeContext to allow reusing the computations done so far.
partial
// conjuncts is the state reached when all conjuncts have been evaluated,
// but without recursively processing arcs.
conjuncts
// evaluatingArcs indicates that the arcs of the Vertex are currently being
// evaluated. If this is encountered it indicates a structural cycle.
// Value does not have to be nil
evaluatingArcs
// finalized means that this node is fully evaluated and that the results
// are save to use without further consideration.
finalized
)
// Wrap creates a Vertex that takes w as a shared value. This allows users
// to set different flags for a wrapped Vertex.
func (c *OpContext) Wrap(v *Vertex, id CloseInfo) *Vertex {
w := c.newInlineVertex(nil, nil, v.Conjuncts...)
n := w.getState(c)
n.share(makeAnonymousConjunct(nil, v, nil), v, CloseInfo{})
return w
}
// Status returns the status of the current node. When reading the status, one
// should always use this method over directly reading status field.
//
// NOTE: this only matters for EvalV3 and beyonds, so a lot of the old code
// might still access it directly.
func (v *Vertex) Status() vertexStatus {
v = v.DerefValue()
return v.status
}
// ForceDone prevents v from being evaluated.
func (v *Vertex) ForceDone() {
v.updateStatus(finalized)
}
// IsUnprocessed reports whether v is unprocessed.
func (v *Vertex) IsUnprocessed() bool {
return v.Status() == unprocessed
}
func (v *Vertex) updateStatus(s vertexStatus) {
if !isCyclePlaceholder(v.BaseValue) {
if !v.IsErr() && v.state != nil {
Assertf(v.state.ctx, v.Status() <= s+1, "attempt to regress status from %d to %d", v.Status(), s)
}
}
if s == finalized && v.BaseValue == nil {
// TODO: for debugging.
// panic("not finalized")
}
v.status = s
}
// setParentDone signals v that the conjuncts of all ancestors have been
// processed.
// If all conjuncts of this node have been set, all arcs will be notified
// of this parent being done.
//
// Note: once a vertex has started evaluation (state != nil), insertField will
// cause all conjuncts to be immediately processed. This means that if all
// ancestors of this node processed their conjuncts, and if this node has
// processed all its conjuncts as well, all nodes that it embedded will have
// received all their conjuncts as well, after which this node will have been
// notified of these conjuncts.
func (v *Vertex) setParentDone() {
v.hasAllConjuncts = true
// Could set "Conjuncts" flag of arc at this point.
if n := v.state; n != nil && len(n.conjuncts) == n.conjunctsPos {
for _, a := range v.Arcs {
a.setParentDone()
}
}
}
// VisitLeafConjuncts visits all conjuncts that are leafs of the ConjunctGroup tree.
func (v *Vertex) VisitLeafConjuncts(f func(Conjunct) bool) {
VisitConjuncts(v.Conjuncts, f)
}
func VisitConjuncts(a []Conjunct, f func(Conjunct) bool) bool {
for _, c := range a {
switch x := c.x.(type) {
case *ConjunctGroup:
if !VisitConjuncts(*x, f) {
return false
}
default:
if !f(c) {
return false
}
}
}
return true
}
// VisitAllConjuncts visits all conjuncts of v, including ConjunctGroups.
// Note that ConjunctGroups do not have an Environment associated with them.
func (v *Vertex) VisitAllConjuncts(f func(c Conjunct, isLeaf bool)) {
visitAllConjuncts(v.Conjuncts, f)
}
func visitAllConjuncts(a []Conjunct, f func(c Conjunct, isLeaf bool)) {
for _, c := range a {
switch x := c.x.(type) {
case *ConjunctGroup:
f(c, false)
visitAllConjuncts(*x, f)
default:
f(c, true)
}
}
}
// HasConjuncts reports whether v has any conjuncts.
func (v *Vertex) HasConjuncts() bool {
return len(v.Conjuncts) > 0
}
// SingleConjunct reports whether there is a single leaf conjunct and returns 1
// if so. It will return 0 if there are no conjuncts or 2 if there are more than
// 1.
//
// This is an often-used operation.
func (v *Vertex) SingleConjunct() (c Conjunct, count int) {
if v == nil {
return c, 0
}
v.VisitLeafConjuncts(func(x Conjunct) bool {
c = x
if count++; count > 1 {
return false
}
return true
})
return c, count
}
// ConjunctAt assumes a Vertex represents a top-level Vertex, such as one
// representing a file or a let expressions, where all conjuncts appear at the
// top level. It may panic if this condition is not met.
func (v *Vertex) ConjunctAt(i int) Conjunct {
return v.Conjuncts[i]
}
// Value returns the Value of v without definitions if it is a scalar
// or itself otherwise.
func (v *Vertex) Value() Value {
switch x := v.BaseValue.(type) {
case nil:
return nil
case *StructMarker, *ListMarker:
return v
case Value:
// TODO: recursively descend into Vertex?
return x
default:
panic(fmt.Sprintf("unexpected type %T", v.BaseValue))
}
}
// isUndefined reports whether a vertex does not have a useable BaseValue yet.
func (v *Vertex) isUndefined() bool {
if !v.isDefined() {
return true
}
switch v.BaseValue {
case nil, cycle:
return true
}
return false
}
// isFinal reports whether this node may no longer be modified.
func (v *Vertex) isFinal() bool {
// TODO(deref): the accounting of what is final should be recorded
// in the original node. Remove this dereference once the old
// evaluator has been removed.
return v.Status() == finalized
}
func (x *Vertex) IsConcrete() bool {
return x.Concreteness() <= Concrete
}
// IsData reports whether v should be interpreted in data mode. In other words,
// it tells whether optional field matching and non-regular fields, like
// definitions and hidden fields, should be ignored.
func (v *Vertex) IsData() bool {
return v.isData || !v.HasConjuncts()
}
// ToDataSingle creates a new Vertex that represents just the regular fields
// of this vertex. Arcs are left untouched.
// It is used by cue.Eval to convert nodes to data on per-node basis.
func (v *Vertex) ToDataSingle() *Vertex {
w := *v
w.isData = true
w.state = nil
w.status = finalized
return &w
}
// ToDataAll returns a new v where v and all its descendents contain only
// the regular fields.
func (v *Vertex) ToDataAll(ctx *OpContext) *Vertex {
v.Finalize(ctx)
arcs := make([]*Vertex, 0, len(v.Arcs))
for _, a := range v.Arcs {
if !a.IsDefined(ctx) {
continue
}
if a.Label.IsRegular() {
arcs = append(arcs, a.ToDataAll(ctx))
}
}
w := *v
w.state = nil
w.status = finalized
w.BaseValue = toDataAll(ctx, w.BaseValue)
w.Arcs = arcs
w.isData = true
w.Conjuncts = slices.Clone(v.Conjuncts)
// Converting to dat drops constraints and non-regular fields. This means
// that the domain on which they are defined is reduced, which will change
// closedness properties. We therefore remove closedness. Note that data,
// in general and JSON specifically, is not closed.
w.ClosedRecursive = false
w.ClosedNonRecursive = false
// TODO(perf): this is not strictly necessary for evaluation, but it can
// hurt performance greatly. Drawback is that it may disable ordering.
for _, s := range w.Structs {
s.Disable = true
}
for i, c := range w.Conjuncts {
if v, _ := c.x.(Value); v != nil {
w.Conjuncts[i].x = toDataAll(ctx, v).(Value)
}
}
return &w
}
func toDataAll(ctx *OpContext, v BaseValue) BaseValue {
switch x := v.(type) {
default:
return x
case *Vertex:
return x.ToDataAll(ctx)
case *Disjunction:
d := *x
values := x.Values
// Data mode involves taking default values and if there is an
// unambiguous default value, we should convert that to data as well.
switch x.NumDefaults {
case 0:
case 1:
return toDataAll(ctx, values[0])
default:
values = values[:x.NumDefaults]
}
d.Values = make([]Value, len(values))
for i, v := range values {
switch x := v.(type) {
case *Vertex:
d.Values[i] = x.ToDataAll(ctx)
default:
d.Values[i] = x
}
}
return &d
case *Conjunction:
c := *x
c.Values = make([]Value, len(x.Values))
for i, v := range x.Values {
// This case is okay because the source is of type Value.
c.Values[i] = toDataAll(ctx, v).(Value)
}
return &c
}
}
// IsFinal reports whether value v can still become more specific, when only
// considering regular fields.
//
// TODO: move this functionality as a method on cue.Value.
func IsFinal(v Value) bool {
return isFinal(v, false)
}
func isFinal(v Value, isClosed bool) bool {
switch x := v.(type) {
case *Vertex:
closed := isClosed || x.ClosedNonRecursive || x.ClosedRecursive
// TODO(evalv3): this is for V2 compatibility. Remove once V2 is gone.
closed = closed || x.IsClosedList() || x.IsClosedStruct()
// This also dereferences the value.
if v, ok := x.BaseValue.(Value); ok {
return isFinal(v, closed)
}
// If it is not closed, it can still become more specific.
if !closed {
return false
}
for _, a := range x.Arcs {
if !a.Label.IsRegular() {
continue
}
if a.ArcType > ArcMember && !a.IsErr() {
return false
}
if !isFinal(a, false) {
return false
}
}
return true
case *Bottom:
// Incomplete errors could be resolved by making a struct more specific.
return x.Code <= StructuralCycleError
default:
return v.Concreteness() <= Concrete
}
}
// func (v *Vertex) IsEvaluating() bool {
// return v.Value == cycle
// }
// IsErr is a convenience function to check whether a Vertex represents an
// error currently. It does not finalize the value, so it is possible that
// v may become erroneous after this call.
func (v *Vertex) IsErr() bool {
// if v.Status() > Evaluating {
return v.Bottom() != nil
}
// Err finalizes v, if it isn't yet, and returns an error if v evaluates to an
// error or nil otherwise.
func (v *Vertex) Err(c *OpContext) *Bottom {
v.Finalize(c)
return v.Bottom()
}
// Bottom reports whether v is currently erroneous It does not finalize the
// value, so it is possible that v may become erroneous after this call.
func (v *Vertex) Bottom() *Bottom {
// TODO: should we consider errors recorded in the state?
v = v.DerefValue()
if b, ok := v.BaseValue.(*Bottom); ok {
return b
}
return nil
}
// func (v *Vertex) Evaluate()
func (v *Vertex) Finalize(c *OpContext) {
// Saving and restoring the error context prevents v from panicking in
// case the caller did not handle existing errors in the context.
err := c.errs
c.errs = nil
c.unify(v, final(finalized, allKnown))
c.errs = err
}
// CompleteArcs ensures the set of arcs has been computed.
func (v *Vertex) CompleteArcs(c *OpContext) {
c.unify(v, final(conjuncts, allKnown))
}
func (v *Vertex) CompleteArcsOnly(c *OpContext) {
c.unify(v, final(conjuncts, fieldSetKnown))
}
func (v *Vertex) AddErr(ctx *OpContext, b *Bottom) {
v.SetValue(ctx, CombineErrors(nil, v.Value(), b))
}
// SetValue sets the value of a node.
func (v *Vertex) SetValue(ctx *OpContext, value BaseValue) *Bottom {
return v.setValue(ctx, finalized, value)
}
func (v *Vertex) setValue(ctx *OpContext, state vertexStatus, value BaseValue) *Bottom {
v.BaseValue = value
// TODO: should not set status here for new evaluator.
v.updateStatus(state)
return nil
}
func (n *nodeContext) setBaseValue(value BaseValue) {
n.node.BaseValue = value
}
// swapBaseValue swaps the BaseValue of a node with the given value and returns
// the previous value.
func (n *nodeContext) swapBaseValue(value BaseValue) (saved BaseValue) {
saved = n.node.BaseValue
n.setBaseValue(value)
return saved
}
// ToVertex wraps v in a new Vertex, if necessary.
func ToVertex(v Value) *Vertex {
switch x := v.(type) {
case *Vertex:
return x
default:
n := &Vertex{
status: finalized,
BaseValue: x,
}
n.AddConjunct(MakeRootConjunct(nil, v))
return n
}
}
// Unwrap returns the possibly non-concrete scalar value of v, v itself for
// lists and structs, or nil if v is an undefined type.
func Unwrap(v Value) Value {
x, ok := v.(*Vertex)
if !ok {
return v
}
// TODO(deref): BaseValue is currently overloaded to track cycles as well
// as the actual or dereferenced value. Once the old evaluator can be
// removed, we should use the new cycle tracking mechanism for cycle
// detection and keep BaseValue clean.
x = x.DerefValue()
if n := x.state; n != nil && isCyclePlaceholder(x.BaseValue) {
if n.errs != nil && !n.errs.IsIncomplete() {
return n.errs
}
if n.scalar != nil {
return n.scalar
}
}
return x.Value()
}
// OptionalType is a bit field of the type of optional constraints in use by an
// Acceptor.
type OptionalType int8
const (
HasField OptionalType = 1 << iota // X: T
HasDynamic // (X): T or "\(X)": T
HasPattern // [X]: T
HasComplexPattern // anything but a basic type
HasAdditional // ...T
IsOpen // Defined for all fields
)
func (v *Vertex) Kind() Kind {
// This is possible when evaluating comprehensions. It is potentially
// not known at this time what the type is.
switch {
case v.state != nil && v.state.kind == BottomKind:
return BottomKind
case v.BaseValue != nil && !isCyclePlaceholder(v.BaseValue):
return v.BaseValue.Kind()
case v.state != nil:
return v.state.kind
default:
return TopKind
}
}
func (v *Vertex) OptionalTypes() OptionalType {
var mask OptionalType
for _, s := range v.Structs {
mask |= s.OptionalTypes()
}
return mask
}
// IsOptional reports whether a field is explicitly defined as optional,
// as opposed to whether it is allowed by a pattern constraint.
func (v *Vertex) IsOptional(label Feature) bool {
for _, a := range v.Arcs {
if a.Label == label {
return a.IsConstraint()
}
}
return false
}
func (v *Vertex) accepts(ok, required bool) bool {
return ok || (!required && !v.ClosedRecursive)
}
func (v *Vertex) IsClosedStruct() bool {
// TODO: uncomment this. This fixes a bunch of closedness bugs
// in the old and new evaluator. For compability sake, though, we
// keep it as is for now.
// if v.Closed {
// return true
// }
// if v.HasEllipsis {
// return false
// }
switch x := v.BaseValue.(type) {
default:
return false
case *Vertex:
return v.ClosedRecursive && !v.HasEllipsis
case *StructMarker:
if x.NeedClose {
return true
}
case *Disjunction:
}
return isClosed(v)
}
func (v *Vertex) IsClosedList() bool {
if x, ok := v.BaseValue.(*ListMarker); ok {
return !x.IsOpen
}
return false
}
// TODO: return error instead of boolean? (or at least have version that does.)
func (v *Vertex) Accept(ctx *OpContext, f Feature) bool {
// TODO(#543): remove this check.
if f.IsDef() {
return true
}
if f.IsHidden() || f.IsLet() {
return true
}
// TODO(deref): right now a dereferenced value holds all the necessary
// closedness information. In the future we may want to allow sharing nodes
// with different closedness information. In that case, we should reconsider
// the use of this dereference. Consider, for instance:
//
// #a: b // this node is currently not shared, but could be.
// b: {c: 1}
v = v.DerefValue()
if x, ok := v.BaseValue.(*Disjunction); ok {
for _, v := range x.Values {
if x, ok := v.(*Vertex); ok && x.Accept(ctx, f) {
return true
}
}
return false
}
if f.IsInt() {
switch v.BaseValue.(type) {
case *ListMarker:
// TODO(perf): use precomputed length.
if f.Index() < len(v.Elems()) {
return true
}
return !v.IsClosedList()
default:
return v.Kind()&ListKind != 0
}
}
if k := v.Kind(); k&StructKind == 0 && f.IsString() {
// If the value is bottom, we may not really know if this used to
// be a struct.
if k != BottomKind || len(v.Structs) == 0 {
return false
}
}
// TODO: move this check to IsClosedStruct. Right now this causes too many
// changes in the debug output, and it also appears to be not entirely
// correct.
if v.HasEllipsis {
return true
}
if !v.IsClosedStruct() || v.Lookup(f) != nil {
return true
}
// TODO(perf): collect positions in error.
defer ctx.ReleasePositions(ctx.MarkPositions())
return v.accepts(Accept(ctx, v, f))
}
// MatchAndInsert finds the conjuncts for optional fields, pattern
// constraints, and additional constraints that match f and inserts them in
// arc. Use f is 0 to match all additional constraints only.
func (v *Vertex) MatchAndInsert(ctx *OpContext, arc *Vertex) {
if !v.Accept(ctx, arc.Label) {
return
}
// Go backwards to simulate old implementation.
for i := len(v.Structs) - 1; i >= 0; i-- {
s := v.Structs[i]
if s.Disable {
continue
}
s.MatchAndInsert(ctx, arc)
}
// This is the equivalent for the new implementation.
if pcs := v.PatternConstraints; pcs != nil {
for _, pc := range pcs.Pairs {
if matchPattern(ctx, pc.Pattern, arc.Label) {
for _, c := range pc.Constraint.Conjuncts {
env := *(c.Env)
if arc.Label.Index() < MaxIndex {
env.DynamicLabel = arc.Label
}
c.Env = &env
root := arc.rootCloseContext(ctx)
root.insertConjunct(ctx, root, c, c.CloseInfo, ArcMember, true, false)
}
}
}
}
}
func (v *Vertex) IsList() bool {
_, ok := v.BaseValue.(*ListMarker)
return ok
}
// Lookup returns the Arc with label f if it exists or nil otherwise.
func (v *Vertex) Lookup(f Feature) *Vertex {
for _, a := range v.Arcs {
if a.Label == f {
// TODO(P1)/TODO(deref): this indirection should ultimately be
// eliminated: the original node may have useful information (like
// original conjuncts) that are eliminated after indirection. We
// should leave it up to the user of Lookup at what point an
// indirection is necessary.
a = a.DerefValue()
return a
}
}
return nil
}
// LookupRaw returns the Arc with label f if it exists or nil otherwise.
//
// TODO: with the introduction of structure sharing, it is not always correct
// to indirect the arc. At the very least, this discards potential useful
// information. We introduce LookupRaw to avoid having to delete the
// information. Ultimately, this should become Lookup, or better, we should
// have a higher-level API for accessing values.
func (v *Vertex) LookupRaw(f Feature) *Vertex {
for _, a := range v.Arcs {
if a.Label == f {
return a
}
}
return nil
}
// Elems returns the regular elements of a list.
func (v *Vertex) Elems() []*Vertex {
// TODO: add bookkeeping for where list arcs start and end.
a := make([]*Vertex, 0, len(v.Arcs))
for _, x := range v.Arcs {
if x.Label.IsInt() {
a = append(a, x)
}
}
return a
}
func (v *Vertex) Init(c *OpContext) {
v.getState(c)
}
// GetArc returns a Vertex for the outgoing arc with label f. It creates and
// ads one if it doesn't yet exist.
func (v *Vertex) GetArc(c *OpContext, f Feature, t ArcType) (arc *Vertex, isNew bool) {
arc = v.Lookup(f)
if arc != nil {
arc.updateArcType(t)
return arc, false
}
if c.isDevVersion() {
return nil, false
}
if v.LockArcs {
// TODO(errors): add positions.
if f.IsInt() {
c.addErrf(EvalError, token.NoPos,
"element at index %v not allowed by earlier comprehension or reference cycle", f)
} else {
c.addErrf(EvalError, token.NoPos,
"field %v not allowed by earlier comprehension or reference cycle", f)
}
}
// TODO: consider setting Dynamic here from parent.
arc = &Vertex{
Parent: v,
Label: f,
ArcType: t,
nonRooted: v.IsDynamic || v.Label.IsLet() || v.nonRooted,
anonymous: v.anonymous || v.Label.IsLet(),
}
v.Arcs = append(v.Arcs, arc)
if t == ArcPending {
v.hasPendingArc = true
}
return arc, true
}
func (v *Vertex) Source() ast.Node {
if v != nil {
if b, ok := v.BaseValue.(Value); ok {
return b.Source()
}
}
return nil
}
// InsertConjunct is a low-level method to insert a conjunct into a Vertex.
// It should only be used by the compiler. It does not consider any logic
// that is necessary if a conjunct is added to a Vertex that is already being
// evaluated.
func (v *Vertex) InsertConjunct(c Conjunct) {
v.Conjuncts = append(v.Conjuncts, c)
}
// InsertConjunctsFrom is a low-level method to insert a conjuncts into a Vertex
// from another Vertex.
func (v *Vertex) InsertConjunctsFrom(w *Vertex) {
v.Conjuncts = append(v.Conjuncts, w.Conjuncts...)
}
// AddConjunct adds the given Conjuncts to v if it doesn't already exist.
func (v *Vertex) AddConjunct(c Conjunct) *Bottom {
if v.BaseValue != nil && !isCyclePlaceholder(v.BaseValue) {
// TODO: investigate why this happens at all. Removing it seems to
// change the order of fields in some cases.
//
// This is likely a bug in the evaluator and should not happen.
return &Bottom{
Err: errors.Newf(token.NoPos, "cannot add conjunct"),
Node: v,
}
}
if !v.hasConjunct(c) {
v.addConjunctUnchecked(c)
}
return nil
}
func (v *Vertex) hasConjunct(c Conjunct) (added bool) {
switch f := c.x.(type) {
case *BulkOptionalField, *Ellipsis:
case *Field:
v.updateArcType(f.ArcType)
case *DynamicField:
v.updateArcType(f.ArcType)
default:
v.ArcType = ArcMember
}
return findConjunct(v.Conjuncts, c) >= 0
}
// findConjunct reports the position of c within cs or -1 if it is not found.
//
// NOTE: we are not comparing closeContexts. The intended use of this function
// is only to add to list of conjuncts within a closeContext.
func findConjunct(cs []Conjunct, c Conjunct) int {
for i, x := range cs {
// TODO: disregard certain fields from comparison (e.g. Refs)?
if x.CloseInfo.closeInfo == c.CloseInfo.closeInfo && // V2
x.x == c.x &&
x.Env.Up == c.Env.Up && x.Env.Vertex == c.Env.Vertex {
return i
}
}
return -1
}
func (n *nodeContext) addConjunction(c Conjunct, index int) {
unreachableForDev(n.ctx)
// NOTE: This does not split binary expressions for comprehensions.
// TODO: split for comprehensions and rewrap?
if x, ok := c.Elem().(*BinaryExpr); ok && x.Op == AndOp {
c.x = x.X
n.conjuncts = append(n.conjuncts, conjunct{C: c, index: index})
c.x = x.Y
n.conjuncts = append(n.conjuncts, conjunct{C: c, index: index})
} else {
n.conjuncts = append(n.conjuncts, conjunct{C: c, index: index})
}
}
func (v *Vertex) addConjunctUnchecked(c Conjunct) {
index := len(v.Conjuncts)
v.Conjuncts = append(v.Conjuncts, c)
if n := v.state; n != nil && !n.ctx.isDevVersion() {
// TODO(notify): consider this as a central place to send out
// notifications. At the moment this is not necessary, but it may
// be if we move the notification mechanism outside of the path of
// running tasks.
n.addConjunction(c, index)
// TODO: can we remove notifyConjunct here? This method is only
// used if either Unprocessed is 0, in which case there will be no
// notification recipients, or for "pushed down" comprehensions,
// which should also have been added at an earlier point.
n.notifyConjunct(c)
}
}
// addConjunctDynamic adds a conjunct to a vertex and immediately evaluates
// it, whilst doing the same for any vertices on the notify list, recursively.
func (n *nodeContext) addConjunctDynamic(c Conjunct) {
unreachableForDev(n.ctx)
n.node.Conjuncts = append(n.node.Conjuncts, c)
n.addExprConjunct(c, partial)
n.notifyConjunct(c)
}
func (n *nodeContext) notifyConjunct(c Conjunct) {
unreachableForDev(n.ctx)
for _, rec := range n.notify {
arc := rec.v
if !arc.hasConjunct(c) {
if arc.state == nil {
// TODO: continuing here is likely to result in a faulty
// (incomplete) configuration. But this may be okay. The
// CUE_DEBUG=0 flag disables this assertion.
n.ctx.Assertf(n.ctx.pos(), !n.ctx.Strict, "unexpected nil state")
n.ctx.addErrf(0, n.ctx.pos(), "cannot add to field %v", arc.Label)
continue
}
arc.state.addConjunctDynamic(c)
}
}
}
func (v *Vertex) AddStruct(s *StructLit, env *Environment, ci CloseInfo) *StructInfo {
info := StructInfo{
StructLit: s,
Env: env,
CloseInfo: ci,
}
if env.Vertex != nil {
// be careful to avoid promotion of nil env.Vertex to non-nil
// info.Decl
info.Decl = env.Vertex
}
if cc := ci.cc; cc != nil && cc.decl != nil {
info.Decl = cc.decl
} else if ci := ci.closeInfo; ci != nil && ci.decl != nil {
info.Decl = ci.decl
}
for _, t := range v.Structs {
if *t == info { // TODO: check for different identity.
return t
}
}
t := &info
v.Structs = append(v.Structs, t)
return t
}
// Path computes the sequence of Features leading from the root to of the
// instance to this Vertex.
//
// NOTE: this is for debugging purposes only.
func (v *Vertex) Path() []Feature {
return appendPath(nil, v)
}
func appendPath(a []Feature, v *Vertex) []Feature {
if v.Parent == nil {
return a
}
a = appendPath(a, v.Parent)
// Skip if the node is a structure-shared node that has been assingned to
// the parent as it's new location: in this case the parent node will
// have the desired label.
if v.Label != 0 && v.Parent.BaseValue != v {
// A Label may be 0 for programmatically inserted nodes.
a = append(a, v.Label)
}
return a
}
// A Conjunct is an Environment-Expr pair. The Environment is the starting
// point for reference lookup for any reference contained in X.
type Conjunct struct {
Env *Environment
x Node
// CloseInfo is a unique number that tracks a group of conjuncts that need
// belong to a single originating definition.
CloseInfo CloseInfo
}
// MakeConjunct creates a conjunct from current Environment and CloseInfo of c.
func (c *OpContext) MakeConjunct(x Expr) Conjunct {
return MakeConjunct(c.e, x, c.ci)
}
// TODO(perf): replace with composite literal if this helps performance.
// MakeRootConjunct creates a conjunct from the given environment and node.
// It panics if x cannot be used as an expression.
func MakeRootConjunct(env *Environment, x Node) Conjunct {
return MakeConjunct(env, x, CloseInfo{})
}
func MakeConjunct(env *Environment, x Node, id CloseInfo) Conjunct {
if env == nil {
// TODO: better is to pass one.
env = &Environment{}
}
switch x.(type) {
case Elem, interface{ expr() Expr }:
default:
panic(fmt.Sprintf("invalid Node type %T", x))
}
return Conjunct{env, x, id}
}
func (c *Conjunct) Source() ast.Node {
return c.x.Source()
}
func (c *Conjunct) Field() Node {
switch x := c.x.(type) {
case *Comprehension:
return x.Value
default:
return c.x
}
}
// Elem retrieves the Elem form of the contained conjunct.
// If it is a Field, it will return the field value.
func (c Conjunct) Elem() Elem {
switch x := c.x.(type) {
case interface{ expr() Expr }:
return x.expr()
case Elem:
return x
default:
panic("unreachable")
}
}
// Expr retrieves the expression form of the contained conjunct. If it is a
// field or comprehension, it will return its associated value. This is only to
// be used for syntactic operations where evaluation of the expression is not
// required. To get an expression paired with the correct environment, use
// EnvExpr.
//
// TODO: rename to RawExpr.
func (c *Conjunct) Expr() Expr {
return ToExpr(c.x)
}
// EnvExpr returns the expression form of the contained conjunct alongside an
// Environment in which this expression should be evaluated.
func (c Conjunct) EnvExpr() (*Environment, Expr) {
return EnvExpr(c.Env, c.Elem())
}
// EnvExpr returns the expression represented by Elem alongside an Environment
// with the necessary adjustments in which the resulting expression can be
// evaluated.
func EnvExpr(env *Environment, elem Elem) (*Environment, Expr) {
for {
switch x := elem.(type) {
case *ConjunctGroup:
if len(*x) == 1 {
c := (*x)[0]
env = c.Env
elem = c.Elem()
continue
}
case *Comprehension:
env = linkChildren(env, x)
c := MakeConjunct(env, x.Value, CloseInfo{})
elem = c.Elem()
continue
}
break
}
return env, ToExpr(elem)
}
// ToExpr extracts the underlying expression for a Node. If something is already
// an Expr, it will return it as is, if it is a field, it will return its value,
// and for comprehensions it returns the yielded struct.
func ToExpr(n Node) Expr {
for {
switch x := n.(type) {
case *ConjunctGroup:
if len(*x) != 1 {
return x
}
n = (*x)[0].x
case Expr:
return x
case interface{ expr() Expr }:
n = x.expr()
case *Comprehension:
n = x.Value
default:
panic("unreachable")
}
}
}
|