1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
// Copyright 2021 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
// Comprehension algorithm
//
// Comprehensions are expanded for, if, and let clauses that yield 0 or more
// structs to be embedded in the enclosing list or struct.
//
// CUE allows cascading of insertions, as in:
//
// a?: int
// b?: int
// if a != _|_ {
// b: 2
// }
// if b != _|_ {
// c: 3
// d: 4
// }
//
// even though CUE does not allow the result of a comprehension to depend
// on another comprehension within a single struct. The way this works is that
// for fields with a fixed prefix path in a comprehension value, the
// comprehension is assigned to these respective fields.
//
// More concretely, the above example is rewritten to:
//
// a?: int
// b: if a != _|_ { 2 }
// c: if b != _|_ { 3 }
// d: if b != _|_ { 4 }
//
// where the fields with if clause are only inserted if their condition
// resolves to true. (Note that this is not valid CUE; it may be in the future.)
//
// With this rewrite, any dependencies in comprehension expressions will follow
// the same rules, more or less, as with normal evaluation.
//
// Note that a single comprehension may be distributed across multiple fields.
// The evaluator will ensure, however, that a comprehension is only evaluated
// once.
//
//
// Closedness
//
// The comprehension algorithm uses the usual closedness mechanism for marking
// fields that belong to a struct: it adds the StructLit associated with the
// comprehension value to the respective arc.
//
// One noteworthy point is that the fields of a struct are only legitimate for
// actual results. For instance, if an if clause evaluates to false, the
// value is not embedded.
//
// To account for this, the comprehension algorithm relies on the fact that
// the closedness information is computed as a separate step. So even if
// the StructLit is added early, its fields will only count once it is
// initialized, which is only done when at least one result is added.
//
// envComprehension caches the result of a single comprehension.
type envComprehension struct {
comp *Comprehension
vertex *Vertex // The Vertex from which the comprehension originates.
// runtime-related fields
err *Bottom
// envs holds all the environments that define a single "yield" result in
// combination with the comprehension struct.
envs []*Environment // nil: unprocessed, non-nil: done.
done bool // true once the comprehension has been evaluated
// StructLits to Init (activate for closedness check)
// when at least one value is yielded.
structs []*StructLit
}
// envYield defines a comprehension for a specific field within a comprehension
// value. Multiple envYields can be associated with a single envComprehension.
// An envComprehension only needs to be evaluated once for multiple envYields.
type envYield struct {
*envComprehension // The original comprehension.
leaf *Comprehension // The leaf Comprehension
// Values specific to the field corresponding to this envYield
// This envYield was added to selfComprehensions
self bool
// This envYield was successfully executed and the resulting conjuncts were
// added.
inserted bool
env *Environment // The adjusted Environment.
id CloseInfo // CloseInfo for the field.
expr Node // The adjusted expression.
}
// ValueClause represents a wrapper Environment in a chained clause list
// to account for the unwrapped struct. It is never created by the compiler
// and serves as a dynamic element only.
type ValueClause struct {
Node
// The node in which to resolve lookups in the comprehension's value struct.
arc *Vertex
}
func (v *ValueClause) yield(s *compState) {
s.yield(s.ctx.spawn(v.arc))
}
// insertComprehension registers a comprehension with a node, possibly pushing
// down its evaluation to the node's children. It will only evaluate one level
// of fields at a time.
func (n *nodeContext) insertComprehension(
env *Environment,
c *Comprehension,
ci CloseInfo,
) {
// TODO(perf): this implementation causes the parent's clauses
// to be evaluated for each nested comprehension. It would be
// possible to simply store the envComprehension of the parent's
// result and have each subcomprehension reuse those. This would
// also avoid the below allocation and would probably allow us
// to get rid of the ValueClause type.
ec := c.comp
if ec == nil {
ec = &envComprehension{
comp: c,
vertex: n.node,
err: nil, // shut up linter
envs: nil, // shut up linter
done: false, // shut up linter
}
}
if ec.done && len(ec.envs) == 0 {
n.decComprehension(c)
return
}
x := c.Value
if !n.ctx.isDevVersion() {
ci = ci.SpawnEmbed(c)
ci.closeInfo.span |= ComprehensionSpan
ci.decl = c
}
var decls []Decl
switch v := ToExpr(x).(type) {
case *StructLit:
numFixed := 0
var fields []Decl
for _, d := range v.Decls {
switch f := d.(type) {
case *Field:
numFixed++
// Create partial comprehension
c := &Comprehension{
Syntax: c.Syntax,
Clauses: c.Clauses,
Value: f,
arcType: f.ArcType, // TODO: can be derived, remove this field.
cc: ci.cc,
comp: ec,
parent: c,
arc: n.node,
}
conjunct := MakeConjunct(env, c, ci)
if n.ctx.isDevVersion() {
n.assertInitialized()
_, c.arcCC = n.insertArcCC(f.Label, ArcPending, conjunct, conjunct.CloseInfo, false)
c.cc = ci.cc
ci.cc.incDependent(n.ctx, COMP, c.arcCC)
} else {
n.insertFieldUnchecked(f.Label, ArcPending, conjunct)
}
fields = append(fields, f)
case *LetField:
// TODO: consider merging this case with the LetField case.
numFixed++
// Create partial comprehension
c := &Comprehension{
Syntax: c.Syntax,
Clauses: c.Clauses,
Value: f,
comp: ec,
parent: c,
arc: n.node,
}
conjunct := MakeConjunct(env, c, ci)
n.assertInitialized()
arc := n.insertFieldUnchecked(f.Label, ArcMember, conjunct)
if n.ctx.isDevVersion() {
arc.MultiLet = true
} else {
arc.MultiLet = f.IsMulti
}
fields = append(fields, f)
default:
decls = append(decls, d)
}
}
if len(fields) > 0 {
// Create a stripped struct that only includes fixed fields.
// TODO(perf): this StructLit may be inserted more than once in
// the same vertex: once taking the StructLit of the referred node
// and once for inserting the Conjunct of the original node.
// Is this necessary (given closedness rules), and is this posing
// a performance problem?
st := v
if len(fields) < len(v.Decls) {
st = &StructLit{
Src: v.Src,
Decls: fields,
}
}
n.node.AddStruct(st, env, ci)
switch {
case !ec.done:
ec.structs = append(ec.structs, st)
case len(ec.envs) > 0:
st.Init(n.ctx)
}
}
switch numFixed {
case 0:
// Add comprehension as is.
case len(v.Decls):
// No comprehension to add at this level.
return
default:
// Create a new StructLit with only the fields that need to be
// added at this level.
x = &StructLit{Decls: decls}
}
}
if n.ctx.isDevVersion() {
t := n.scheduleTask(handleComprehension, env, x, ci)
t.comp = ec
t.leaf = c
} else {
n.comprehensions = append(n.comprehensions, envYield{
envComprehension: ec,
leaf: c,
env: env,
id: ci,
expr: x,
})
}
}
type compState struct {
ctx *OpContext
comp *Comprehension
i int
f YieldFunc
state vertexStatus
}
// yield evaluates a Comprehension within the given Environment and calls
// f for each result.
func (c *OpContext) yield(
node *Vertex, // errors are associated with this node
env *Environment, // env for field for which this yield is called
comp *Comprehension,
state combinedFlags,
f YieldFunc, // called for every result
) *Bottom {
s := &compState{
ctx: c,
comp: comp,
f: f,
state: state.vertexStatus(),
}
y := comp.Clauses[0]
saved := c.PushState(env, y.Source())
if node != nil {
defer c.PopArc(c.PushArc(node))
}
s.i++
y.yield(s)
s.i--
return c.PopState(saved)
}
func (s *compState) yield(env *Environment) (ok bool) {
c := s.ctx
if s.i >= len(s.comp.Clauses) {
s.f(env)
return true
}
dst := s.comp.Clauses[s.i]
saved := c.PushState(env, dst.Source())
s.i++
dst.yield(s)
s.i--
if b := c.PopState(saved); b != nil {
c.AddBottom(b)
return false
}
return !c.HasErr()
}
// injectComprehension evaluates and inserts embeddings. It first evaluates all
// embeddings before inserting the results to ensure that the order of
// evaluation does not matter.
func (n *nodeContext) injectComprehensions(state vertexStatus) (progress bool) {
unreachableForDev(n.ctx)
workRemaining := false
// We use variables, instead of range, as the list may grow dynamically.
for i := 0; i < len(n.comprehensions); i++ {
d := &n.comprehensions[i]
if d.self || d.inserted {
continue
}
if err := n.processComprehension(d, state); err != nil {
// TODO: Detect that the nodes are actually equal
if err.ForCycle && err.Value == n.node {
n.selfComprehensions = append(n.selfComprehensions, *d)
progress = true
d.self = true
return
}
d.err = err
workRemaining = true
continue
// TODO: add this when it can be done without breaking other
// things.
//
// // Add comprehension to ensure incomplete error is inserted.
// // This ensures that the error is reported in the Vertex
// // where the comprehension was defined, and not just in the
// // node below. This, in turn, is necessary to support
// // certain logic, like export, that expects to be able to
// // detect an "incomplete" error at the first level where it
// // is necessary.
// n := d.node.getNodeContext(ctx)
// n.addBottom(err)
}
progress = true
}
if !workRemaining {
n.comprehensions = n.comprehensions[:0] // Signal that all work is done.
}
return progress
}
// injectSelfComprehensions processes comprehensions that were earlier marked
// as iterating over the node in which they are defined. Such comprehensions
// are legal as long as they do not modify the arc set of the node.
func (n *nodeContext) injectSelfComprehensions(state vertexStatus) {
unreachableForDev(n.ctx)
// We use variables, instead of range, as the list may grow dynamically.
for i := 0; i < len(n.selfComprehensions); i++ {
n.processComprehension(&n.selfComprehensions[i], state)
}
n.selfComprehensions = n.selfComprehensions[:0] // Signal that all work is done.
}
// processComprehension processes a single Comprehension conjunct.
// It returns an incomplete error if there was one. Fatal errors are
// processed as a "successfully" completed computation.
func (n *nodeContext) processComprehension(d *envYield, state vertexStatus) *Bottom {
err := n.processComprehensionInner(d, state)
// NOTE: we cannot move this to defer in processComprehensionInner, as we
// use panics to implement "yielding" (and possibly coroutines in the
// future).
n.decComprehension(d.leaf)
return err
}
func (n *nodeContext) decComprehension(p *Comprehension) {
for ; p != nil; p = p.parent {
cc := p.cc
if cc != nil {
cc.decDependent(n.ctx, COMP, p.arcCC)
}
p.cc = nil
}
}
func (n *nodeContext) processComprehensionInner(d *envYield, state vertexStatus) *Bottom {
ctx := n.ctx
// Compute environments, if needed.
if !d.done {
var envs []*Environment
f := func(env *Environment) {
envs = append(envs, env)
}
if err := ctx.yield(d.vertex, d.env, d.comp, oldOnly(state), f); err != nil {
if err.IsIncomplete() {
return err
}
// continue to collect other errors.
d.done = true
d.inserted = true
if d.vertex != nil {
d.vertex.state.addBottom(err)
ctx.PopArc(d.vertex)
}
return nil
}
d.envs = envs
if len(d.envs) > 0 {
for _, s := range d.structs {
s.Init(n.ctx)
}
}
d.structs = nil
d.done = true
}
d.inserted = true
if len(d.envs) == 0 {
c := d.leaf.arcCC
// because the parent referrer will reach a zero count before this
// node will reach a zero count, we need to propagate the arcType.
c.updateArcType(ctx, ArcNotPresent)
return nil
}
v := n.node
for c := d.leaf; c.parent != nil; c = c.parent {
// because the parent referrer will reach a zero count before this
// node will reach a zero count, we need to propagate the arcType.
if p := c.arcCC; p != nil {
p.src.updateArcType(c.arcType)
p.updateArcType(ctx, c.arcType)
}
v.updateArcType(c.arcType)
if v.ArcType == ArcNotPresent {
parent := v.Parent
b := parent.reportFieldCycleError(ctx, d.comp.Syntax.Pos(), v.Label)
d.envComprehension.vertex.state.addBottom(b)
ctx.current().err = b
ctx.current().state = taskFAILED
return nil
}
v = c.arc
}
id := d.id
// TODO: should we treat comprehension values as optional?
// It seems so, but it causes some hangs.
// id.setOptional(nil)
for _, env := range d.envs {
if n.node.ArcType == ArcNotPresent {
b := n.node.reportFieldCycleError(ctx, d.comp.Syntax.Pos(), n.node.Label)
ctx.current().err = b
n.yield()
return nil
}
env = linkChildren(env, d.leaf)
if ctx.isDevVersion() {
n.scheduleConjunct(Conjunct{env, d.expr, id}, id)
} else {
n.addExprConjunct(Conjunct{env, d.expr, id}, state)
}
}
return nil
}
// linkChildren adds environments for the chain of vertices to a result
// environment.
func linkChildren(env *Environment, c *Comprehension) *Environment {
if c.parent != nil {
env = linkChildren(env, c.parent)
env = spawn(env, c.arc)
}
return env
}
|