1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
// Copyright 2023 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
import (
"fmt"
"cuelang.org/go/cue/ast"
"cuelang.org/go/cue/errors"
"cuelang.org/go/cue/token"
)
// This file contains functionality for processing conjuncts to insert the
// corresponding values in the Vertex.
//
// Conjuncts are divided into two classes:
// - literal values that need no evaluation: these are inserted directly into
// the Vertex.
// - field or value expressions that need to be evaluated: these are inserted
// as a task into the Vertex' associated scheduler for later evaluation.
// The implementation of these tasks can be found in tasks.go.
//
// The main entrypoint is scheduleConjunct.
// scheduleConjunct splits c into parts to be incrementally processed and queues
// these parts up for processing. it will itself not cause recursive processing.
func (n *nodeContext) scheduleConjunct(c Conjunct, id CloseInfo) {
n.assertInitialized()
// Explanation of switch statement:
//
// A Conjunct can be a leaf or, through a ConjunctGroup, a tree. The tree
// reflects the history of how the conjunct was inserted in terms of
// definitions and embeddings. This, in turn, is used to compute closedness.
//
// Once all conjuncts for a Vertex have been collected, this tree contains
// all the information needed to trace its histroy: if a Vertex is
// referenced in an expression, this tree can be used to insert the
// conjuncts keeping closedness in mind.
//
// In the collection phase, however, this is not sufficient. CUE computes
// conjuncts "out of band". This means that conjuncts accumulate in
// different parts of the tree in an indeterminate order. closeContext is
// used to account for this.
//
// Basically, if the closeContext associated with c belongs to n, we take
// it that the conjunct needs to be inserted at the point in the tree
// associated by this closeContext. If, on the other hand, the closeContext
// is not defined or does not belong to this node, we take this conjunct
// is inserted by means of a reference. In this case we assume that the
// computation of the tree has completed and the tree can be used to reflect
// the closedness structure.
//
// TODO: once the evaluator is done and all tests pass, consider having
// two different entry points to account for these cases.
switch cc := c.CloseInfo.cc; {
case cc == nil || cc.src != n.node:
// In this case, a Conjunct is inserted from another Arc. If the
// conjunct represents an embedding or definition, we need to create a
// new closeContext to represent this.
if id.cc == nil {
id.cc = n.node.rootCloseContext(n.ctx)
}
if id.cc == cc {
panic("inconsistent state: same closeContext")
}
var t closeNodeType
if c.CloseInfo.FromDef {
t |= closeDef
}
// NOTE: the check for OpenInline is not strictly necessary, but it
// clarifies that using id.FromEmbed is not used when OpenInline is not
// used.
if c.CloseInfo.FromEmbed || (n.ctx.OpenInline && id.FromEmbed) {
t |= closeEmbed
}
if t != 0 || c.CloseInfo.GroupUnify {
id, _ = id.spawnCloseContext(n.ctx, t)
}
if !id.cc.done {
id.cc.incDependent(n.ctx, DEFER, nil)
defer id.cc.decDependent(n.ctx, DEFER, nil)
}
if id.cc.src != n.node {
// TODO(#3406): raise a panic again.
// out: d & { d }
// d: {
// kind: "foo" | "bar"
// { kind: "foo" } | { kind: "bar" }
// }
// panic("inconsistent state: nodes differ")
}
default:
// In this case, the conjunct is inserted as the result of an expansion
// of a conjunct in place, not a reference. In this case, we must use
// the cached closeContext.
id.cc = cc
// Note this subtlety: we MUST take the cycle info from c when this is
// an in place evaluated node, otherwise we must take that of id.
id.CycleInfo = c.CloseInfo.CycleInfo
}
if id.cc.needsCloseInSchedule != nil {
dep := id.cc.needsCloseInSchedule
id.cc.needsCloseInSchedule = nil
defer id.cc.decDependent(n.ctx, EVAL, dep)
}
env := c.Env
if id.cc.isDef {
n.node.ClosedRecursive = true
}
switch x := c.Elem().(type) {
case *ConjunctGroup:
for _, c := range *x {
// TODO(perf): can be one loop
cc := c.CloseInfo.cc
if cc.src == n.node && cc.needsCloseInSchedule != nil {
// We need to handle this specifically within the ConjunctGroup
// loop, because multiple conjuncts may be using the same root
// closeContext. This can be merged once Vertex.Conjuncts is an
// interface, requiring any list to be a root conjunct.
dep := cc.needsCloseInSchedule
cc.needsCloseInSchedule = nil
defer cc.decDependent(n.ctx, EVAL, dep)
}
}
for _, c := range *x {
n.scheduleConjunct(c, id)
}
case *Vertex:
// TODO: move this logic to scheduleVertexConjuncts or at least ensure
// that we can also share data Vertices?
if x.IsData() {
n.unshare()
n.insertValueConjunct(env, x, id)
} else {
n.scheduleVertexConjuncts(c, x, id)
}
case Value:
// TODO: perhaps some values could be shared.
n.unshare()
n.insertValueConjunct(env, x, id)
case *BinaryExpr:
// NOTE: do not unshare: a conjunction could still allow structure
// sharing, such as in the case of `ref & ref`.
if x.Op == AndOp {
n.scheduleConjunct(MakeConjunct(env, x.X, id), id)
n.scheduleConjunct(MakeConjunct(env, x.Y, id), id)
return
}
n.unshare()
// Even though disjunctions and conjunctions are excluded, the result
// must may still be list in the case of list arithmetic. This could
// be a scalar value only once this is no longer supported.
n.scheduleTask(handleExpr, env, x, id)
case *StructLit:
n.unshare()
n.scheduleStruct(env, x, id)
case *ListLit:
n.unshare()
// At this point we known we have at least an empty list.
n.updateCyclicStatusV3(id)
env := &Environment{
Up: env,
Vertex: n.node,
}
n.updateNodeType(ListKind, x, id)
n.scheduleTask(handleListLit, env, x, id)
case *DisjunctionExpr:
n.unshare()
id := id
id.setOptionalV3(n)
// TODO(perf): reuse envDisjunct values so that we can also reuse the
// disjunct slice.
n.ctx.holeID++
d := envDisjunct{
env: env,
cloneID: id,
holeID: n.ctx.holeID,
src: x,
expr: x,
}
for _, dv := range x.Values {
d.disjuncts = append(d.disjuncts, disjunct{
expr: dv.Val,
isDefault: dv.Default,
mode: mode(x.HasDefaults, dv.Default),
})
}
n.scheduleDisjunction(d)
case *Comprehension:
// always a partial comprehension.
n.insertComprehension(env, x, id)
case Resolver:
n.scheduleTask(handleResolver, env, x, id)
case Evaluator:
n.unshare()
// Interpolation, UnaryExpr, CallExpr
n.scheduleTask(handleExpr, env, x, id)
default:
panic("unreachable")
}
n.ctx.stats.Conjuncts++
}
// scheduleStruct records all elements of this conjunct in the structure and
// then processes it. If an element needs to be inserted for evaluation,
// it may be scheduled.
func (n *nodeContext) scheduleStruct(env *Environment,
s *StructLit,
ci CloseInfo) {
n.updateCyclicStatusV3(ci)
// NOTE: This is a crucial point in the code:
// Unification dereferencing happens here. The child nodes are set to
// an Environment linked to the current node. Together with the De Bruijn
// indices, this determines to which Vertex a reference resolves.
childEnv := &Environment{
Up: env,
Vertex: n.node,
}
hasEmbed := false
hasEllipsis := false
// TODO: do we still need this?
// shouldClose := ci.cc.isDef || ci.cc.isClosedOnce
s.Init(n.ctx)
// TODO: do we still need to AddStruct and do we still need to Disable?
parent := n.node.AddStruct(s, childEnv, ci)
parent.Disable = true // disable until processing is done.
ci.IsClosed = false
// TODO: precompile
loop1:
for _, d := range s.Decls {
switch d.(type) {
case *Ellipsis:
hasEllipsis = true
break loop1
}
}
// TODO(perf): precompile whether struct has embedding.
loop2:
for _, d := range s.Decls {
switch d.(type) {
case *Comprehension, Expr:
// No need to increment and decrement, as there will be at least
// one entry.
if _, ok := s.Src.(*ast.File); !ok && s.Src != nil {
// If this is not a file, the struct indicates the scope/
// boundary at which closedness should apply. This is not true
// for files.
// We should also not spawn if this is a nested Comprehension,
// where the spawn is already done as it may lead to spurious
// field not allowed errors. We can detect this with a nil s.Src.
// TODO(evalv3): use a more principled detection mechanism.
// TODO: set this as a flag in StructLit so as to not have to
// do the somewhat dangerous cast here.
ci, _ = ci.spawnCloseContext(n.ctx, 0)
}
// Note: adding a count is not needed here, as there will be an
// embed spawn below.
hasEmbed = true
break loop2
}
}
// First add fixed fields and schedule expressions.
for _, d := range s.Decls {
switch x := d.(type) {
case *Field:
if x.Label.IsString() && x.ArcType == ArcMember {
n.aStruct = s
n.aStructID = ci
}
ci := ci
if x.ArcType == ArcOptional {
ci.setOptionalV3(n)
}
fc := MakeConjunct(childEnv, x, ci)
// fc.CloseInfo.cc = nil // TODO: should we add this?
n.insertArc(x.Label, x.ArcType, fc, ci, true)
case *LetField:
lc := MakeConjunct(childEnv, x, ci)
n.insertArc(x.Label, ArcMember, lc, ci, true)
case *Comprehension:
ci, cc := ci.spawnCloseContext(n.ctx, closeEmbed)
cc.decl = x
cc.incDependent(n.ctx, DEFER, nil)
defer cc.decDependent(n.ctx, DEFER, nil)
n.insertComprehension(childEnv, x, ci)
hasEmbed = true
case *Ellipsis:
// Can be added unconditionally to patterns.
ci.cc.isDef = false
ci.cc.isClosed = false
ci.cc.isDefOrig = false
case *DynamicField:
if x.ArcType == ArcMember {
n.aStruct = s
n.aStructID = ci
}
n.scheduleTask(handleDynamic, childEnv, x, ci)
case *BulkOptionalField:
ci := ci
ci.setOptionalV3(n)
// All do not depend on each other, so can be added at once.
n.scheduleTask(handlePatternConstraint, childEnv, x, ci)
case Expr:
// TODO: perhaps special case scalar Values to avoid creating embedding.
ci, cc := ci.spawnCloseContext(n.ctx, closeEmbed)
cc.decl = x
// TODO: do we need to increment here?
cc.incDependent(n.ctx, DEFER, nil) // decrement deferred below
defer cc.decDependent(n.ctx, DEFER, nil)
ec := MakeConjunct(childEnv, x, ci)
n.scheduleConjunct(ec, ci)
hasEmbed = true
}
}
if hasEllipsis {
ci.cc.isTotal = true
}
if !hasEmbed {
n.aStruct = s
n.aStructID = ci
ci.cc.hasNonTop = true
}
// TODO: probably no longer necessary.
parent.Disable = false
}
// scheduleVertexConjuncts injects the conjuncst of src n. If src was not fully
// evaluated, it subscribes dst for future updates.
func (n *nodeContext) scheduleVertexConjuncts(c Conjunct, arc *Vertex, closeInfo CloseInfo) {
// disjunctions, we need to dereference he underlying node.
if deref(n.node) == deref(arc) {
if n.isShared {
n.addShared(closeInfo)
}
return
}
if n.shareIfPossible(c, arc, closeInfo) {
arc.getState(n.ctx)
return
}
// We need to ensure that each arc is only unified once (or at least) a
// bounded time, witch each conjunct. Comprehensions, for instance, may
// distribute a value across many values that get unified back into the
// same value. If such a value is a disjunction, than a disjunction of N
// disjuncts will result in a factor N more unifications for each
// occurrence of such value, resulting in exponential running time. This
// is especially common values that are used as a type.
//
// However, unification is idempotent, so each such conjunct only needs
// to be unified once. This cache checks for this and prevents an
// exponential blowup in such case.
//
// TODO(perf): this cache ensures the conjuncts of an arc at most once
// per ID. However, we really need to add the conjuncts of an arc only
// once total, and then add the close information once per close ID
// (pointer can probably be shared). Aside from being more performant,
// this is probably the best way to guarantee that conjunctions are
// linear in this case.
ciKey := closeInfo
ciKey.Refs = nil
ciKey.Inline = false
key := arcKey{arc, ciKey}
for _, k := range n.arcMap {
if key == k {
return
}
}
n.arcMap = append(n.arcMap, key)
mode := closeRef
isDef, relDepth := IsDef(c.Expr())
// Also check arc.Label: definitions themselves do not have the FromDef
// and corresponding closeContexts to reflect their closedness. This means
// that if we are structure sharing, we may end up with a Vertex that is
// a definition without the reference reflecting that. We need to handle
// this case here and create a closeContext accordingly. Note that if an
// intermediate node refers to a definition, things are evaluated at least
// once and the closeContext is in place.
// See eval/closedness.txtar/test patterns.*.indirect.
// TODO: investigate whether we should add the corresponding closeContexts
// within definitions as well to avoid having to deal with these special
// cases.
if isDef || arc.Label.IsDef() {
mode = closeDef
}
depth := VertexDepth(arc) - relDepth
// TODO: or should we always insert the wrapper (for errors)?
ci, dc := closeInfo.spawnCloseContext(n.ctx, mode)
closeInfo = ci
dc.incDependent(n.ctx, DEFER, nil) // decrement deferred below
defer dc.decDependent(n.ctx, DEFER, nil)
if !n.node.nonRooted || n.node.IsDynamic {
if state := arc.getBareState(n.ctx); state != nil {
state.addNotify2(n.node, closeInfo)
}
}
// Use explicit index in case Conjuncts grows during iteration.
for i := 0; i < len(arc.Conjuncts); i++ {
c := arc.Conjuncts[i]
n.insertAndSkipConjuncts(c, closeInfo, depth)
}
if state := arc.getBareState(n.ctx); state != nil {
n.toComplete = true
}
}
// insertAndSkipConjuncts cuts the conjunct tree at the given relative depth.
// The CUE spec defines references to be closed if they cross definition
// boundaries. The conjunct tree tracks the origin of conjuncts, for instance,
// whether they originate from a definition or embedding. This allows these
// properties to hold even if a conjunct was referred indirectly.
//
// However, references within a referred Vertex, even though their conjunct
// tree reflects the full history, should exclude any of the tops of this
// tree that were not "crossed".
//
// TODO(evalv3): Consider this example:
//
// #A: {
// b: {}
// c: b & {
// d: 1
// }
// }
// x: #A
// x: b: g: 1
//
// Here, x.b is set to contain g. This is disallowed by #A and this will fail.
// However, if we were to leave out x.b.g, x.b.c would still reference x.b
// through #A. Even though, x.b is closed and empty, this should not cause an
// error, as the reference should not apply to fields that were added within
// #A itself. Just because #A is reference should not alter its correctness.
//
// The algorithm to detect this keeps track of the relative depth of references.
// Whenever a reference is resolved, all conjuncts that correspond to a given
// depth less than the depth of the referred node are skipped.
//
// Note that the relative depth of references can be applied to any node,
// even if this reference was defined in another struct.
func (n *nodeContext) insertAndSkipConjuncts(c Conjunct, id CloseInfo, depth int) {
if c.CloseInfo.cc == nil {
n.scheduleConjunct(c, id)
return
}
if c.CloseInfo.cc.depth <= depth {
if x, ok := c.Elem().(*ConjunctGroup); ok {
for _, c := range *x {
n.insertAndSkipConjuncts(c, id, depth)
}
return
}
}
n.scheduleConjunct(c, id)
}
func (n *nodeContext) addNotify2(v *Vertex, c CloseInfo) {
// scheduleConjunct should ensure that the closeContext of of c is aligned
// with v. We rely on this to be the case here. We enforce this invariant
// here for clarity and to ensure correctness.
n.ctx.Assertf(token.NoPos, c.cc.src == v, "close context not aligned with vertex")
// No need to do the notification mechanism if we are already complete.
switch {
case n.node.isFinal():
return
case !n.node.isInProgress():
case n.meets(allAncestorsProcessed):
return
}
// Create a "root" closeContext to reflect the entry point of the
// reference into n.node relative to cc within v. After that, we can use
// assignConjunct to add new conjuncts.
// TODO: dedup: only add if t does not already exist. First check if this
// is even possible by adding a panic.
root := n.node.rootCloseContext(n.ctx)
if root.isDecremented {
return
}
for _, r := range n.notify {
if r.cc == c.cc {
return
}
}
cc := c.cc
// TODO: it should not be necessary to register for notifications for
// let expressions, so we could also filter for !n.node.Label.IsLet().
// However, somehow this appears to result in slightly better error
// messages.
if root.addNotifyDependency(n.ctx, cc) {
// TODO: this is mostly identical to the slice in the root closeContext.
// Use only one once V2 is removed.
n.notify = append(n.notify, receiver{cc.src, cc})
}
}
// Literal conjuncts
// NoSharingSentinel is a sentinel value that is used to disable sharing of
// nodes. We make this an error to make it clear that we discard the value.
var NoShareSentinel = &Bottom{
Err: errors.Newf(token.NoPos, "no sharing"),
}
func (n *nodeContext) insertValueConjunct(env *Environment, v Value, id CloseInfo) {
n.updateCyclicStatusV3(id)
ctx := n.ctx
switch x := v.(type) {
case *Vertex:
if x.ClosedNonRecursive {
n.node.ClosedNonRecursive = true
var cc *closeContext
id, cc = id.spawnCloseContext(n.ctx, 0)
cc.incDependent(n.ctx, DEFER, nil)
defer cc.decDependent(n.ctx, DEFER, nil)
cc.isClosedOnce = true
if v, ok := x.BaseValue.(*Vertex); ok {
n.insertValueConjunct(env, v, id)
return
}
}
if _, ok := x.BaseValue.(*StructMarker); ok {
n.aStruct = x
n.aStructID = id
}
if !x.IsData() {
c := MakeConjunct(env, x, id)
n.scheduleVertexConjuncts(c, x, id)
return
}
// TODO: evaluate value?
switch v := x.BaseValue.(type) {
default:
panic(fmt.Sprintf("invalid type %T", x.BaseValue))
case *ListMarker:
n.updateCyclicStatusV3(id)
// TODO: arguably we know now that the type _must_ be a list.
n.scheduleTask(handleListVertex, env, x, id)
return
case *StructMarker:
for _, a := range x.Arcs {
if a.ArcType != ArcMember {
continue
}
// TODO(errors): report error when this is a regular field.
c := MakeConjunct(nil, a, id)
n.insertArc(a.Label, a.ArcType, c, id, true)
}
case Value:
n.insertValueConjunct(env, v, id)
}
return
case *Bottom:
if x == NoShareSentinel {
n.unshare()
return
}
id.cc.hasNonTop = true
n.addBottom(x)
return
case *Builtin:
id.cc.hasNonTop = true
if v := x.BareValidator(); v != nil {
n.insertValueConjunct(env, v, id)
return
}
}
if !n.updateNodeType(v.Kind(), v, id) {
return
}
switch x := v.(type) {
case *Disjunction:
// TODO(perf): reuse envDisjunct values so that we can also reuse the
// disjunct slice.
id := id
id.setOptionalV3(n)
n.ctx.holeID++
d := envDisjunct{
env: env,
cloneID: id,
holeID: n.ctx.holeID,
src: x,
value: x,
}
for i, dv := range x.Values {
d.disjuncts = append(d.disjuncts, disjunct{
expr: dv,
isDefault: i < x.NumDefaults,
mode: mode(x.HasDefaults, i < x.NumDefaults),
})
}
n.scheduleDisjunction(d)
case *Conjunction:
// TODO: consider sharing: conjunct could be `ref & ref`, for instance,
// in which case ref could still be shared.
for _, x := range x.Values {
n.insertValueConjunct(env, x, id)
}
case *Top:
n.hasTop = true
id.cc.hasTop = true
case *BasicType:
id.cc.hasNonTop = true
case *BoundValue:
id.cc.hasNonTop = true
switch x.Op {
case LessThanOp, LessEqualOp:
if y := n.upperBound; y != nil {
v := SimplifyBounds(ctx, n.kind, x, y)
if err := valueError(v); err != nil {
err.AddPosition(v)
err.AddPosition(n.upperBound)
err.AddClosedPositions(id)
}
n.upperBound = nil
n.insertValueConjunct(env, v, id)
return
}
n.upperBound = x
case GreaterThanOp, GreaterEqualOp:
if y := n.lowerBound; y != nil {
v := SimplifyBounds(ctx, n.kind, x, y)
if err := valueError(v); err != nil {
err.AddPosition(v)
err.AddPosition(n.lowerBound)
err.AddClosedPositions(id)
}
n.lowerBound = nil
n.insertValueConjunct(env, v, id)
return
}
n.lowerBound = x
case EqualOp, NotEqualOp, MatchOp, NotMatchOp:
// This check serves as simplifier, but also to remove duplicates.
k := 0
match := false
for _, c := range n.checks {
if y, ok := c.x.(*BoundValue); ok {
switch z := SimplifyBounds(ctx, n.kind, x, y); {
case z == y:
match = true
case z == x:
continue
}
}
n.checks[k] = c
k++
}
n.checks = n.checks[:k]
if !match {
n.checks = append(n.checks, MakeConjunct(env, x, id))
}
return
}
case Validator:
// This check serves as simplifier, but also to remove duplicates.
cx := MakeConjunct(env, x, id)
kind := x.Kind()
// A validator that is inserted in a closeContext should behave like top
// in the sense that the closeContext should not be closed if no other
// value is present that would erase top (cc.hasNonTop): if a field is
// only associated with a validator, we leave it to the validator to
// decide what fields are allowed.
if kind&(ListKind|StructKind) != 0 {
id.cc.hasTop = true
}
for i, y := range n.checks {
if b, ok := SimplifyValidator(ctx, cx, y); ok {
n.checks[i] = b
return
}
}
n.checks = append(n.checks, cx)
// We use set the type of the validator argument here to ensure that
// validation considers the ultimate value of embedded validators,
// rather than assuming that the struct in which an expression is
// embedded is always a struct.
// TODO(validatorType): get rid of setting n.hasTop here.
k := x.Kind()
if k == TopKind {
n.hasTop = true
}
n.updateNodeType(k, x, id)
case *Vertex:
// handled above.
case Value: // *NullLit, *BoolLit, *NumLit, *StringLit, *BytesLit, *Builtin
if y := n.scalar; y != nil {
if b, ok := BinOp(ctx, EqualOp, x, y).(*Bool); !ok || !b.B {
n.reportConflict(x, y, x.Kind(), y.Kind(), n.scalarID, id)
}
break
}
n.scalar = x
n.scalarID = id
n.signal(scalarKnown)
default:
panic(fmt.Sprintf("unknown value type %T", x))
}
if n.lowerBound != nil && n.upperBound != nil {
if u := SimplifyBounds(ctx, n.kind, n.lowerBound, n.upperBound); u != nil {
if err := valueError(u); err != nil {
err.AddPosition(n.lowerBound)
err.AddPosition(n.upperBound)
err.AddClosedPositions(id)
}
n.lowerBound = nil
n.upperBound = nil
n.insertValueConjunct(env, u, id)
}
}
}
|