File: constraints.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (257 lines) | stat: -rw-r--r-- 6,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright 2023 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package adt

// This file contains functionality for pattern constraints.

// Constraints keeps track of pattern constraints and the set of allowed
// fields.
type Constraints struct {
	// Pairs lists Pattern-Constraint pairs.
	Pairs []PatternConstraint // TODO(perf): move to Arcs?

	// Allowed is a Value that defines the set of all allowed fields.
	// To check if a field is allowed, its correpsonding CUE value can be
	// unified with this value.
	Allowed Value
}

// A PatternConstraint represents a single
//
//	[pattern]: T.
//
// The Vertex holds a list of conjuncts to represent the constraints. We use
// a Vertex so that these can be evaluated and compared for equality.
// Unlike for regular Vertex values, CloseInfo.closeContext is set for
// constraints: it is needed when matching subfields to ensure that conjuncts
// get inserted into the proper groups.
type PatternConstraint struct {
	Pattern    Value
	Constraint *Vertex
}

// insertListEllipsis inserts the given list ellipsis as a pattern constraint on
// n, applying it to all elements at indexes >= offset.
func (n *nodeContext) insertListEllipsis(offset int, ellipsis Conjunct) {
	ctx := n.ctx

	var p Value
	if offset == 0 {
		p = &BasicType{
			Src: ellipsis.Field().Source(),
			K:   IntKind,
		}
	} else {
		p = &BoundValue{
			Src:   nil, // TODO: field source.
			Op:    GreaterEqualOp,
			Value: ctx.NewInt64(int64(offset)),
		}
	}
	n.insertConstraint(p, ellipsis)
}

// insertConstraint ensures a given pattern constraint is present in the
// constraints of n and reports whether the pair was added newly.
//
// The given conjunct must have a closeContext associated with it. This ensures
// that different pattern constraints pairs originating from the same
// closeContext will be collated properly in fields to which these constraints
// are applied.
func (n *nodeContext) insertConstraint(pattern Value, c Conjunct) bool {
	if c.CloseInfo.cc == nil {
		panic("constraint conjunct must have closeContext associated with it")
	}

	ctx := n.ctx
	v := n.node

	pcs := v.PatternConstraints
	if pcs == nil {
		pcs = &Constraints{}
		v.PatternConstraints = pcs
	}

	var constraint *Vertex
	for _, pc := range pcs.Pairs {
		if Equal(ctx, pc.Pattern, pattern, 0) {
			constraint = pc.Constraint
			break
		}
	}

	if constraint == nil {
		constraint = &Vertex{
			// See "Self-referencing patterns" in cycle.go
			IsPatternConstraint: true,
		}
		pcs.Pairs = append(pcs.Pairs, PatternConstraint{
			Pattern:    pattern,
			Constraint: constraint,
		})
	} else {
		found := false
		constraint.VisitLeafConjuncts(func(x Conjunct) bool {
			if c.CloseInfo.cc == x.CloseInfo.cc && c.x == x.x {
				found = true
				return false
			}
			return true
		})
		// The constraint already existed and the conjunct was already added.
		if found {
			return false
		}
	}

	constraint.addConjunctUnchecked(c)
	return true
}

// matchPattern reports whether f matches pattern. The result reflects
// whether unification of pattern with f converted to a CUE value succeeds.
// The caller should check separately whether f matches any other arcs
// that are not covered by pattern.
func matchPattern(ctx *OpContext, pattern Value, f Feature) bool {
	if pattern == nil || !f.IsRegular() {
		return false
	}

	// TODO(perf): this assumes that comparing an int64 against apd.Decimal
	// is faster than converting this to a Num and using that for comparison.
	// This may very well not be the case. But it definitely will be if we
	// special-case integers that can fit in an int64 (or int32 if we want to
	// avoid many bound checks), which we probably should. Especially when we
	// allow list constraints, like [<10]: T.
	var label Value
	if f.IsString() && int64(f.Index()) != MaxIndex {
		label = f.ToValue(ctx)
	}

	return matchPatternValue(ctx, pattern, f, label)
}

// matchPatternValue matches a concrete value against f. label must be the
// CUE value that is obtained from converting f.
//
// This is an optimization an intended to be faster than regular CUE evaluation
// for the majority of cases where pattern constraints are used.
func matchPatternValue(ctx *OpContext, pattern Value, f Feature, label Value) (result bool) {
	if v, ok := pattern.(*Vertex); ok {
		v.unify(ctx, scalarKnown, finalize)
	}
	pattern = Unwrap(pattern)
	label = Unwrap(label)

	if pattern == label {
		return true
	}

	k := IntKind
	if f.IsString() {
		k = StringKind
	}
	if !k.IsAnyOf(pattern.Kind()) {
		return false
	}

	// Fast track for the majority of cases.
	switch x := pattern.(type) {
	case *Bottom:
		// TODO: hoist and reuse with the identical code in optional.go.
		if x == cycle {
			err := ctx.NewPosf(pos(pattern), "cyclic pattern constraint")
			ctx.vertex.VisitLeafConjuncts(func(c Conjunct) bool {
				addPositions(err, c)
				return true
			})
			ctx.AddBottom(&Bottom{
				Err:  err,
				Node: ctx.vertex,
			})
		}
		if ctx.errs == nil {
			ctx.AddBottom(x)
		}
		return false

	case *Top:
		return true

	case *BasicType:
		return x.K&k == k

	case *BoundValue:
		switch x.Kind() {
		case StringKind:
			if label == nil {
				return false
			}
			str := label.(*String).Str
			return x.validateStr(ctx, str)

		case NumberKind:
			return x.validateInt(ctx, int64(f.Index()))
		}

	case *Num:
		if !f.IsInt() {
			return false
		}
		yi := int64(f.Index())
		xi, err := x.X.Int64()
		return err == nil && xi == yi

	case *String:
		if label == nil {
			return false
		}
		y, ok := label.(*String)
		return ok && x.Str == y.Str

	case *Conjunction:
		for _, a := range x.Values {
			if !matchPatternValue(ctx, a, f, label) {
				return false
			}
		}
		return true

	case *Disjunction:
		for _, a := range x.Values {
			if matchPatternValue(ctx, a, f, label) {
				return true
			}
		}
		return false
	}

	// Slow track.
	//
	// TODO(perf): if a pattern tree has many values that are not handled in the
	// fast track, it is probably more efficient to handle everything in the
	// slow track. One way to signal this would be to have a "value thunk" at
	// the root that causes the fast track to be bypassed altogether.

	if label == nil {
		label = f.ToValue(ctx)
	}

	n := ctx.newInlineVertex(nil, nil,
		MakeConjunct(ctx.e, pattern, ctx.ci),
		MakeConjunct(ctx.e, label, ctx.ci))
	n.Finalize(ctx)
	return n.Err(ctx) == nil
}