File: cycle.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (1232 lines) | stat: -rw-r--r-- 39,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
// Copyright 2022 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package adt

// TODO:
// - compiler support for detecting cross-pattern references.
// - handle propagation of cyclic references to root across disjunctions.

// # Cycle detection algorithm V3
//
// The cycle detection algorithm detects the following kind of cycles:
//
// - Structural cycles: cycles where a field, directly or indirectly, ends up
//   referring to an ancestor node. For instance:
//
//      a: b: a
//
//      a: b: c
//      c: a
//
//      T: a?: T
//      T: a: {}
//
// - Reference cycles: cycles where a field, directly or indirectly, end up
//   referring to itself:
//      a: a
//
//      a: b
//      b: a
//
// - Inline cycles: cycles within an expression, for instance:
//
//      x: {y: x}.out
//
// Note that it is possible for the unification of two non-cyclic structs to be
// cyclic:
//
//     y: {
//         f: h: g
//         g: _
//     }
//     x: {
//         f: _
//         g: f
//     }
//
// Even though the above contains no cycles, the result of `x & y` is cyclic:
//
//     f: h: g
//     g: f
//
// Cycle detection is inherently a dynamic process.
//
// ## ALGORITHM OVERVIEW
//
//  1.  Traversal with Path Tracking:
//      •   Perform a depth-first traversal of the CUE value graph.
//      •   Maintain a path (call stack) of ancestor nodes during traversal.
//          For this purpose, we separately track the parent relation as well
//          as marking nodes that are currently being processed.
//  2.  Per-Conjunct Cycle Tracking:
//      •   For each conjunct in a node’s value (i.e., c1 & c2 & ... & cn),
//          track cycles independently.
//      •   A node is considered non-cyclic if any of its conjuncts is
//          non-cyclic.
//  3.  Handling References:
//      •   When encountering a reference, check if it points to any node in the
//          current path.
//          •   If yes, mark the conjunct as cyclic.
//          •   If no, add the referenced node to the path and continue traversal.
//  4.  Handling Optional Constructs:
//      •   Conjuncts originating from optional fields, pattern constraints, and
//          disjunctions are marked as optional.
//      •   Cycle tracking for optional conjuncts is identical to conjuncts for
//          conjuncts not marked as optional up to the point a cycle is detected
//          (i.e. all conjuncts are cyclic).
//      •   When a cycle is detected, the lists of referenced nodes are cleared
//          for each conjuncts, which thereby are afforded one additional level
//          of cycles. This allows for any optional paths to terminate.
//
//
// ## CALL STACK
//
// There are two key types of structural cycles: referencing an ancestor and
// repeated mixing in of cyclic types. We track these separately.
//
// We also keep track the non-cyclicity of conjuncts a bit differently for these
// cases.
//
// ### Ancestor References
//
// Ancestor references are relatively easy to detect by simply checking if a
// resolved reference is a direct parent, or is a node that is currently under
// evaluation.
//
// An ancestor cycle is considered to be a structural cycle if there are no
// new sibling conjuncts associated with new structure.
//
// ### Reoccurring references
//
// For reoccuring references, we need to maintain a per-conjunct list of
// references. When a reference was previously resolved in a conjunct, we may
// have a cycle and will mark the conjunct as such.
//
// A cycle from a reoccurring reference is a structural cycle if there are
// no incoming arcs from any non-cyclic conjunct. The need for this subtle
// distinction can be clarified by an example;
//
// 		crossRefNoCycle: t4: {
// 			T: X={
// 				y: X.x
// 			}
//			// Here C.x.y must consider any incoming arc: here T originates from
//			// a non-cyclic conjunct, but once evaluated it becomes cyclic and
//			// will be the only conjunct. This is not a cycle, though. We must
//			// take into account that T was introduced from a non-cyclic
//			// conjunct.
// 			C: T & { x: T }
// 		}
//
//
// ## OPTIONAL PATHS
//
// Cyclic references for conjuncts that originate from an "optional" path, such
// as optional fields and pattern constraints, may not necessary be cyclic, as
// on a next iteration such conjuncts _may_ still terminate.
//
// To allow for this kind of eventuality, optional conjuncts are processed in
// two phases:
//
//  - they behave as normal conjuncts up to the point a cycle is detected
//  - afterwards, their reference history is cleared and they are afforded to
//    proceed until the next cycle is detected.
//
// Note that this means we may allow processing to proceed deeper than strictly
// necessary in some cases.
//
// Note that we only allow this for references: for cycles with ancestor nodes
// we immediately terminate for optional fields. This simplifies the algorithm.
// But it is also correct: in such cases either the whole node is in an optional
// path, in which case reporting an error is benign (as they are allowed), or
// the node corresponds to a non-optional field, in which case a cycle can be
// expected to reproduce another non-optional cycle, which will be an error.
//
// ### Examples
//
// These are not cyclic:
//
//  1. The structure is cyclic, but he optional field needs to be "fed" to
//     continue the cycle:
//
//      a: b?: a        // a: {}
//
//      b: [string]: b  // b: {}
//
//      c: 1 | {d: c}   // c: 1
//
//  2. The structure is cyclic. Conjunct `x: a` keeps detecting cycles, but
//     is fed with new structure up until x.b.c.b.c.b. After this, this
//     (optional) conjunct is allowed to proceed until the next cycle, which
//     not be reached, as the `b?` is not unified with a concrete value.
//     So the result of `x` is `{b: c: b: c: b: c: {}}`.
//
//      a: b?: c: a
//      x: a
//      x: b: c: b: c: b: {}
//
// These are cyclic:
//
//  3. Here the optional conjunct triggers a new cycle of itself, but also
//     of a conjunct that turns `b` into a regular field. It is thus a self-
//     feeding cycle.
//
//      a: b?: a
//      a: b: _
//
//      c: [string]: c
//      c: b: _
//
//  4.  Here two optional conjuncts end up feeding each other, resulting in a
//      cycle.
//
//      a: c: a | int
//      a: a | int
//
//      y1: c?: c: y1
//      x1: y1
//      x1: c: y1
//
//      y2: [string]: b: y2
//      x2: y2
//      x2: b: y2
//
//
// ## INLINE CYCLES
//
// The semantics for treating inline cycles can be derived by rewriting CUE of
// the form
//
//      x: {...}.out
//
// as
//
//      x:  _x.out
//      _x: {...}
//
// A key difference is that as such structs are not "rooted" (they have no path
// from the root of the configuration tree) and thus any error should be caught
// and evaluated before doing a lookup in such structs to be correct. For the
// purpose of this algorithm, this especially pertains to structural cycles.
//
// TODO: implement: current handling of inline still loosly based on old
// algorithm.
//
// ### Examples
//
// Expanding these out with the above rules should give the same results.
//
// Cyclic:
//
//  1. This is an example of mutual recursion, triggered by n >= 2.
//
//      fibRec: {
//          nn: int,
//          out: (fib & {n: nn}).out
//      }
//      fib: {
//          n: int
//          if n >= 2 { out: (fibRec & {nn: n - 2}).out }
//          if n < 2  { out: n }
//      }
//      fib2: fib & {n: 2}
//
// is equivalent to
//
//      fibRec: {
//          nn:   int,
//          out:  _out.out
//          _out: fib & {n: nn}
//      }
//      fib: {
//          n: int
//          if n >= 2 {
//              out:  _out.out
//              _out: fibRec & {nn: n - 2}
//          }
//          if n < 2  { out: n }
//      }
//      fib2: fib & {n: 2}
//
// Non-cyclic:
//
//  2. This is not dissimilar to the previous example, but since additions are
//     done on separate lines, each field is only visited once and no cycle is
//     triggered.
//
//      f: { in:  number, out: in }
//      k00: 0
//      k10: (f & {in: k00}).out
//      k20: (f & {in: k10}).out
//      k10: (f & {in: k20}).out
//
// which is equivalent to
//
//      f: { in:  number, out: in }
//      k0:   0
//      k1:  _k1.out
//      k2:  _k2.out
//      k1:  _k3.out
//      _k1: f
//      _k2: f
//      _k3: f
//      _k1: in: k0
//      _k2: in: k1
//      _k3: in: k2
//
// and thus is non-cyclic.
//
// ## EDGE CASES
//
// This section lists several edge cases, including interactions with the
// detection of self-reference cycles.
//
// Self-reference cycles, like `a: a`, evaluate to top. The evaluator detects
// this cases and drop such conjuncts, effectively treating them as top.
//
// ### Self-referencing patterns
//
// Self-references in patterns are typically handled automatically. But there
// are some edge cases where the are not:
//
// 		_self: x: [...and(x)]
// 		_self
// 		x: [1]
//
// Patterns are recorded in Vertex values that are themselves evaluated to
// allow them to be compared, such as in subsumption or filtering disjunctions.
// In the above case, `x` may be evaluated to be inserted in the pattern
// Vertex, but because the pattern is not itself `x`, node identity cannot be
// used to detect a self-reference.
//
// The current solution is to mark a node as a pattern constraint and treat
// structural cycles to such nodes as "reference cycles". As pattern constraints
// are optional, it is safe to ignore such errors.
//
// ### Lookups in inline cycles
//
// A lookup, especially in inline cycles, should be considered evidence of
// non-cyclicity. Consider the following example:
//
// 		{ p: { x: p, y: 1 } }.p.x.y
//
// without considering a lookup as evidence of non-cyclicity, this would be
// resulting in a structural cycle.
//
// ## CORRECTNESS
//
// ### The algorithm will terminate
//
// First consider the algorithm without optional conjuncts. If a parent node is
// referenced, it will obviously be caught. The more interesting case is if a
// reference to a node is made which is later reintroduced.
//
// When a conjunct splits into multiple conjuncts, its entire cycle history is
// copied. This means that any cyclic conjunct will be marked as cyclic in
// perpetuity. Non-cyclic conjuncts will either remain non-cyclic or be turned
// into a cycle. A conjunct can only remain non-cyclic for a maximum of the
// number of nodes in a graph. For any structure to repeat, it must have a
// repeated reference. This means that eventually either all conjuncts will
// either terminate or become cyclic.
//
// Optional conjuncts do not materially alter this property. The only difference
// is that when a node-level cycle is detected, we continue processing of some
// conjuncts until this next cycle is reached.
//
//
// ## TODO
//
//  - treatment of let fields
//  - tighter termination for some mutual cycles in optional conjuncts.

// DEPRECATED: V2 cycle detection.
//
// TODO(evalv3): remove these comments once we have fully moved to V3.
//

// Cycle detection:
//
// - Current algorithm does not allow for early non-cyclic conjunct detection.
// - Record possibly cyclic references.
// - Mark as cyclic if no evidence is found.
// - Note that this also activates the same reference in other (parent) conjuncts.

// CYCLE DETECTION ALGORITHM
//
// BACKGROUND
//
// The cycle detection is inspired by the cycle detection used by Tomabechi's
// [Tomabechi COLING 1992] and Van Lohuizen's [Van Lohuizen ACL 2000] graph
// unification algorithms.
//
// Unlike with traditional graph unification, however, CUE uses references,
// which, unlike node equivalence, are unidirectional. This means that the
// technique to track equivalence through dereference, as common in graph
// unification algorithms like Tomabechi's, does not work unaltered.
//
// The unidirectional nature of references imply that each reference equates a
// facsimile of the value it points to. This renders the original approach of
// node-pointer equivalence useless.
//
//
// PRINCIPLE OF ALGORITHM
//
// The solution for CUE is based on two observations:
//
// - the CUE algorithm tracks all conjuncts that define a node separately, -
// accumulating used references on a per-conjunct basis causes duplicate
//   references to uniquely identify cycles.
//
// A structural cycle, as defined by the spec, can then be detected if all
// conjuncts are marked as a cycle.
//
// References are accumulated as follows:
//
// 1. If a conjunct is a reference the reference is associated with that
//    conjunct as well as the conjunct corresponding to the value it refers to.
// 2. If a conjunct is a struct (including lists), its references are associated
//    with all embedded values and fields.
//
// To narrow down the specifics of the reference-based cycle detection, let us
// explore structural cycles in a bit more detail.
//
//
// STRUCTURAL CYCLES
//
// See the language specification for a higher-level and more complete overview.
//
// We have to define when a cycle is detected. CUE implementations MUST report
// an error upon a structural cycle, and SHOULD report cycles at the shortest
// possible paths at which they occur, but MAY report these at deeper paths. For
// instance, the following CUE has a structural cycle
//
//     f: g: f
//
// The shortest path at which the cycle can be reported is f.g, but as all
// failed configurations are logically equal, it is fine for implementations to
// report them at f.g.g, for instance.
//
// It is not, however, correct to assume that a reference to a parent is always
// a cycle. Consider this case:
//
//     a: [string]: b: a
//
// Even though reference `a` refers to a parent node, the cycle needs to be fed
// by a concrete field in struct `a` to persist, meaning it cannot result in a
// cycle as defined in the spec as it is defined here. Note however, that a
// specialization of this configuration _can_ result in a cycle. Consider
//
//     a: [string]: b: a
//     a: c: _
//
// Here reference `a` is guaranteed to result in a structural cycle, as field
// `c` will match the pattern constraint unconditionally.
//
// In other words, it is not possible to exclude tracking references across
// pattern constraints from cycle checking.
//
// It is tempting to try to find a complete set of these edge cases with the aim
// to statically determine cases in which this occurs. But as [Carpenter 1992]
// demonstrates, it is possible for cycles to be created as a result of unifying
// two graphs that are themselves acyclic. The following example is a
// translation of Carpenters example to CUE:
//
//     y: {
//         f: h: g
//         g: _
//     }
//     x: {
//         f: _
//         g: f
//     }
//
// Even though the above contains no cycles, the result of `x & y` is cyclic:
//
//     f: h: g
//     g: f
//
// This means that, in practice, cycle detection has at least partially a
// dynamic component to it.
//
//
// ABSTRACT ALGORITHM
//
// The algorithm is described declaratively by defining what it means for a
// field to have a structural cycle. In the below, a _reference_ is uniquely
// identified by the pointer identity of a Go Resolver instance.
//
// Cycles are tracked on a per-conjunct basis and are not aggregated per Vertex:
// administrative information is only passed on from parent to child conjunct.
//
// A conjunct is a _parent_ of another conjunct if is a conjunct of one of the
// non-optional fields of the conjunct. For instance, conjunct `x` with value
// `{b: y & z}`, is a parent of conjunct `y` as well as `z`. Within field `b`,
// the conjuncts `y` and `z` would be tracked individually, though.
//
// A conjunct is _associated with a reference_ if its value was obtained by
// evaluating a reference. Note that a conjunct may be associated with many
// references if its evaluation requires evaluating a chain of references. For
// instance, consider
//
//    a: {x: d}
//    b: a
//    c: b & e
//    d: y: 1
//
// the first conjunct of field `c` (reference `b`) has the value `{x: y: 1}` and
// is associated with references `b` and `a`.
//
// The _tracked references_ of a conjunct are all references that are associated
// with it or any of its ancestors (parents of parents). For instance, the
// tracked references of conjunct `b.x` of field `c.x` are `a`, `b`, and `d`.
//
// A conjunct is a violating cycle if it is a reference that:
//  - occurs in the tracked references of the conjunct, or
//  - directly refers to a parent node of the conjunct.
//
// A conjunct is cyclic if it is a violating cycle or if any of its ancestors
// are a violating cycle.
//
// A field has a structural cycle if it is composed of at least one conjunct
// that is a violating cycle and no conjunct that is not cyclic.
//
// Note that a field can be composed of only cyclic conjuncts while still not be
// structural cycle: as long as there are no conjuncts that are a violating
// cycle, it is not a structural cycle. This is important for the following
//     case:
//
//         a: [string]: b: a
//         x: a
//         x: c: b: c: {}
//
// Here, reference `a` is never a cycle as the recursive references crosses a
// pattern constraint that only instantiates if it is unified with something
// else.
//
//
// DISCUSSION
//
// The goal of conjunct cycle marking algorithm is twofold: - mark conjuncts
// that are proven to propagate indefinitely - mark them as early as possible
// (shortest CUE path).
//
// TODO: Prove all cyclic conjuncts will eventually be marked as cyclic.
//
// TODO:
//   - reference marks whether it crosses a pattern, improving the case
//     a: [string]: b: c: b
//     This requires a compile-time detection mechanism.
//
//
// REFERENCES
// [Tomabechi COLING 1992]: https://aclanthology.org/C92-2068
//     Hideto Tomabechi. 1992. Quasi-Destructive Graph Unification with
//     Structure-Sharing. In COLING 1992 Volume 2: The 14th International
//     Conference on Computational Linguistics.
//
// [Van Lohuizen ACL 2000]: https://aclanthology.org/P00-1045/
//     Marcel P. van Lohuizen. 2000. "Memory-Efficient and Thread-Safe
//     Quasi-Destructive Graph Unification". In Proceedings of the 38th Annual
//     Meeting of the Association for Computational Linguistics, pages 352–359,
//     Hong Kong. Association for Computational Linguistics.
//
// [Carpenter 1992]:
//     Bob Carpenter, "The logic of typed feature structures."
//     Cambridge University Press, ISBN:0-521-41932-8

// TODO: mark references as crossing optional boundaries, rather than
// approximating it during evaluation.

type CycleInfo struct {
	// CycleType is used by the V3 cycle detection algorithm to track whether
	// a cycle is detected and of which type.
	CycleType CyclicType

	// IsCyclic indicates whether this conjunct, or any of its ancestors,
	// had a violating cycle.
	// TODO: make this a method and use CycleType == IsCyclic after V2 is removed.
	IsCyclic bool

	// Inline is used to detect expressions referencing themselves, for instance:
	//     {x: out, out: x}.out
	Inline bool

	// TODO(perf): pack this in with CloseInfo. Make an uint32 pointing into
	// a buffer maintained in OpContext, using a mark-release mechanism.
	Refs *RefNode
}

// A RefNode is a linked list of associated references.
type RefNode struct {
	Ref Resolver
	Arc *Vertex // Ref points to this Vertex

	// Node is the Vertex of which Ref is evaluated as a conjunct.
	// If there is a cyclic reference (not structural cycle), then
	// the reference will have the same node. This allows detecting reference
	// cycles for nodes referring to nodes with an evaluation cycle
	// (mode tracked to Evaluating status). Examples:
	//
	//      a: x
	//      Y: x
	//      x: {Y}
	//
	// and
	//
	//      Y: x.b
	//      a: x
	//      x: b: {Y} | null
	//
	// In both cases there are not structural cycles and thus need to be
	// distinguished from regular structural cycles.
	Node *Vertex

	Next  *RefNode
	Depth int32
}

// cyclicConjunct is used in nodeContext to postpone the computation of
// cyclic conjuncts until a non-cyclic conjunct permits it to be processed.
type cyclicConjunct struct {
	c   Conjunct
	arc *Vertex // cached Vertex
}

// CycleType indicates the type of cycle detected. The CyclicType is associated
// with a conjunct and may only increase in value for child conjuncts.
type CyclicType uint8

const (
	NoCycle CyclicType = iota

	// like newStructure, but derived from a reference. If this is set, a cycle
	// will move to maybeCyclic instead of isCyclic.
	IsOptional

	// maybeCyclic is set if a cycle is detected within an optional field.
	//
	MaybeCyclic

	// IsCyclic marks that this conjunct has a structural cycle.
	IsCyclic
)

func (n *nodeContext) detectCycleV3(arc *Vertex, env *Environment, x Resolver, ci CloseInfo) (_ CloseInfo, skip bool) {
	n.assertInitialized()

	// If we are pointing to a direct ancestor, and we are in an optional arc,
	// we can immediately terminate, as a cycle error within an optional field
	// is okay. If we are pointing to a direct ancestor in a non-optional arc,
	// we also can terminate, as this is a structural cycle.
	// TODO: use depth or check direct ancestry.
	if n.hasAncestorV3(arc) {
		return n.markCyclicV3(arc, env, x, ci)
	}

	// As long as a node-wide cycle has not yet been detected, we allow cycles
	// in optional fields to proceed unchecked.
	if n.hasNonCyclic && ci.CycleType == MaybeCyclic {
		return ci, false
	}

	for r := ci.Refs; r != nil; r = r.Next {
		if equalDeref(r.Arc, arc) {
			if n.node.IsDynamic || ci.Inline {
				n.reportCycleError()
				return ci, true
			}

			if equalDeref(r.Node, n.node) {
				// reference cycle
				return ci, true
			}

			// If there are still any non-cyclic conjuncts, and if this conjunct
			// is optional, we allow this to continue one more cycle.
			if ci.CycleType == IsOptional && n.hasNonCyclic {
				ci.CycleType = MaybeCyclic
				// There my still be a cycle if the optional field is a pattern
				// that unifies with itself, as in:
				//
				//		[string]: c
				//		a: b
				//		b: _
				//		c: a: int
				//
				// This is equivalent to a reference cycle.
				if r.Depth == n.node.state.depth {
					return ci, true
				}
				ci.Refs = nil
				return ci, false
			}

			return n.markCyclicPathV3(arc, env, x, ci)
		}
	}

	ci.Refs = &RefNode{
		Arc:   deref(arc),
		Ref:   x,
		Node:  deref(n.node),
		Next:  ci.Refs,
		Depth: n.depth,
	}

	return ci, false
}

// markCyclicV3 marks a conjunct as being cyclic. Also, it postpones processing
// the conjunct in the absence of evidence of a non-cyclic conjunct.
func (n *nodeContext) markCyclicV3(arc *Vertex, env *Environment, x Resolver, ci CloseInfo) (CloseInfo, bool) {
	ci.CycleType = IsCyclic
	ci.IsCyclic = true

	n.hasAnyCyclicConjunct = true
	n.hasAncestorCycle = true

	if !n.hasNonCycle && env != nil {
		// TODO: investigate if we can get rid of cyclicConjuncts in the new
		// evaluator.
		v := Conjunct{env, x, ci}
		n.node.cc().incDependent(n.ctx, DEFER, nil)
		n.cyclicConjuncts = append(n.cyclicConjuncts, cyclicConjunct{v, arc})
		return ci, true
	}
	return ci, false
}

func (n *nodeContext) markCyclicPathV3(arc *Vertex, env *Environment, x Resolver, ci CloseInfo) (CloseInfo, bool) {
	ci.CycleType = IsCyclic
	ci.IsCyclic = true

	n.hasAnyCyclicConjunct = true

	if !n.hasNonCyclic && !n.hasNonCycle && env != nil {
		// TODO: investigate if we can get rid of cyclicConjuncts in the new
		// evaluator.
		v := Conjunct{env, x, ci}
		n.node.cc().incDependent(n.ctx, DEFER, nil)
		n.cyclicConjuncts = append(n.cyclicConjuncts, cyclicConjunct{v, arc})
		return ci, true
	}
	return ci, false
}

// hasDepthCycle uses depth counters to keep track of cycles:
//   - it allows detecting reference cycles as well (state evaluating is
//     no longer used in v3)
//   - it can capture cycles across inline structs, which do not have
//     Parent set.
//
// TODO: ensure that evalDepth is cleared when a node is finalized.
func (c *OpContext) hasDepthCycle(v *Vertex) bool {
	if s := v.state; s != nil && v.status != finalized {
		return s.evalDepth > 0 && s.evalDepth < c.evalDepth
	}
	return false
}

// hasAncestorV3 checks whether a node is currently being processed. The code
// still assumes that is includes any node that is currently being processed.
func (n *nodeContext) hasAncestorV3(arc *Vertex) bool {
	if n.ctx.hasDepthCycle(arc) {
		return true
	}

	// 	TODO: insert test conditions for Bloom filter that guarantee that all
	// 	parent nodes have been marked as "hot", in which case we can avoid this
	// 	traversal.
	// if n.meets(allAncestorsProcessed)  {
	// 	return false
	// }

	for p := n.node.Parent; p != nil; p = p.Parent {
		// TODO(perf): deref arc only once.
		if equalDeref(p, arc) {
			return true
		}
	}
	return false
}

func (n *nodeContext) hasOnlyCyclicConjuncts() bool {
	return (n.hasAncestorCycle && !n.hasNonCycle) ||
		(n.hasAnyCyclicConjunct && !n.hasNonCyclic)
}

// setOptionalV3 marks a conjunct as being optional. The nodeContext is
// currently unused, but allows for checks to be added and to add logging during
// debugging.
func (c *CloseInfo) setOptionalV3(n *nodeContext) {
	_ = n // See comment.
	if c.CycleType == NoCycle {
		c.CycleType = IsOptional
	}
}

// markCycle checks whether the reference x is cyclic. There are two cases:
//  1. it was previously used in this conjunct, and
//  2. it directly references a parent node.
//
// Other inputs:
//
//	arc      the reference to which x points
//	env, ci  the components of the Conjunct from which x originates
//
// A cyclic node is added to a queue for later processing if no evidence of a
// non-cyclic node has so far been found. updateCyclicStatus processes delayed
// nodes down the line once such evidence is found.
//
// If a cycle is the result of "inline" processing (an expression referencing
// itself), an error is reported immediately.
//
// It returns the CloseInfo with tracked cyclic conjuncts updated, and
// whether or not its processing should be skipped, which is the case either if
// the conjunct seems to be fully cyclic so far or if there is a valid reference
// cycle.
func (n *nodeContext) markCycle(arc *Vertex, env *Environment, x Resolver, ci CloseInfo) (_ CloseInfo, skip bool) {
	unreachableForDev(n.ctx)

	n.assertInitialized()

	// TODO(perf): this optimization can work if we also check for any
	// references pointing to arc within arc. This can be done with compiler
	// support. With this optimization, almost all references could avoid cycle
	// checking altogether!
	// if arc.status == Finalized && arc.cyclicReferences == nil {
	//  return v, false
	// }

	// Check whether the reference already occurred in the list, signaling
	// a potential cycle.
	found := false
	depth := int32(0)
	for r := ci.Refs; r != nil; r = r.Next {
		if r.Ref != x {
			// TODO(share): this is a bit of a hack. We really should implement
			// (*Vertex).cyclicReferences for the new evaluator. However,
			// implementing cyclicReferences is somewhat tricky, as it requires
			// referenced nodes to be evaluated, which is a guarantee we may not
			// want to give. Moreover, it seems we can find a simpler solution
			// based on structure sharing. So punt on this solution for now.
			if r.Arc != arc || !n.ctx.isDevVersion() {
				continue
			}
			found = true
		}

		// A reference that is within a graph that is being evaluated
		// may repeat with a different arc and will point to a
		// non-finalized arc. A repeating reference that points outside the
		// graph will always be the same address. Hence, if this is a
		// finalized arc with a different address, it resembles a reference that
		// is included through a different path and is not a cycle.
		if !equalDeref(r.Arc, arc) && arc.status == finalized {
			continue
		}

		// For dynamically created structs we mark this as an error. Otherwise
		// there is only an error if we have visited the arc before.
		if ci.Inline && (arc.IsDynamic || equalDeref(r.Arc, arc)) {
			n.reportCycleError()
			return ci, true
		}

		// We have a reference cycle, as distinguished from a structural
		// cycle. Reference cycles represent equality, and thus are equal
		// to top. We can stop processing here.
		// var nn1, nn2 *Vertex
		// if u := r.Node.state.underlay; u != nil {
		// 	nn1 = u.node
		// }
		// if u := n.node.state.underlay; u != nil {
		// 	nn2 = u.node
		// }
		if equalDeref(r.Node, n.node) {
			return ci, true
		}

		depth = r.Depth
		found = true

		// Mark all conjuncts of this Vertex that refer to the same node as
		// cyclic. This is an extra safety measure to ensure that two conjuncts
		// cannot work in tandom to circumvent a cycle. It also tightens
		// structural cycle detection in some cases. Late detection of cycles
		// can result in a lot of redundant work.
		//
		// TODO: this loop is not on a critical path, but it may be evaluated
		// if it is worthy keeping at some point.
		for i, c := range n.node.Conjuncts {
			if c.CloseInfo.IsCyclic {
				continue
			}
			for rr := c.CloseInfo.Refs; rr != nil; rr = rr.Next {
				// TODO: Is it necessary to find another way to find
				// "parent" conjuncts? This mechanism seems not entirely
				// accurate. Maybe a pointer up to find the root and then
				// "spread" downwards?
				if r.Ref == x && equalDeref(r.Arc, rr.Arc) {
					n.node.Conjuncts[i].CloseInfo.IsCyclic = true
					break
				}
			}
		}

		break
	}

	if arc.state != nil {
		if d := arc.state.evalDepth; d > 0 && d >= n.ctx.optionalMark {
			arc.IsCyclic = true
		}
	}

	// The code in this switch statement registers structural cycles caught
	// through EvaluatingArcs to the root of the cycle. This way, any node
	// referencing this value can track these nodes early. This is mostly an
	// optimization to shorten the path for which structural cycles are
	// detected, which may be critical for performance.
outer:
	switch arc.status {
	case evaluatingArcs: // also  Evaluating?
		if arc.state.evalDepth < n.ctx.optionalMark {
			break
		}

		// The reference may already be there if we had no-cyclic structure
		// invalidating the cycle.
		for r := arc.cyclicReferences; r != nil; r = r.Next {
			if r.Ref == x {
				break outer
			}
		}

		arc.cyclicReferences = &RefNode{
			Arc:  deref(arc),
			Ref:  x,
			Next: arc.cyclicReferences,
		}

	case finalized:
		// Insert cyclic references from found arc, if any.
		for r := arc.cyclicReferences; r != nil; r = r.Next {
			if r.Ref == x {
				// We have detected a cycle, with the only exception if arc is
				// a disjunction, as evaluation always stops at unresolved
				// disjunctions.
				if _, ok := arc.BaseValue.(*Disjunction); !ok {
					found = true
				}
			}
			ci.Refs = &RefNode{
				Arc:  deref(r.Arc),
				Node: deref(n.node),

				Ref:   x,
				Next:  ci.Refs,
				Depth: n.depth,
			}
		}
	}

	// NOTE: we need to add a tracked reference even if arc is not cyclic: it
	// may still cause a cycle that does not refer to a parent node. For
	// instance:
	//
	//      y: [string]: b: y
	//      x: y
	//      x: c: x
	//
	// ->
	//          - in conjuncts
	//             - out conjuncts: these count for cycle detection.
	//      x: {
	//          [string]: <1: y> b: y
	//          c: x
	//      }
	//      x.c: {
	//          <1: y> b: y
	//          <2: x> y
	//             [string]: <3: x, y> b: y
	//          <2: x> c: x
	//      }
	//      x.c.b: {
	//          <1: y> y
	//             [string]: <4: y; Cyclic> b: y
	//          <3: x, y> b: y
	//      }
	//      x.c.b.b: {
	//          <3: x, y> y
	//               [string]: <5: x, y, Cyclic> b: y
	//          <4: y, Cyclic> y
	//               [string]: <5: x, y, Cyclic> b: y
	//      }
	//      x.c.c: { // structural cycle
	//          <3: x, y> b: y
	//          <2: x> x
	//               <6: x, Cyclic>: y
	//                    [string]: <8: x, y; Cyclic> b: y
	//               <7: x, Cyclic>: c: x
	//      }
	//      x.c.c.b: { // structural cycle
	//          <3: x, y> y
	//               [string]: <3: x, y; Cyclic> b: y
	//          <8: x, y; Cyclic> y
	//      }
	// ->
	//      x: [string]: b: y
	//      x: c: b: y
	//      x: c: [string]: b: y
	//      x: c: b: b: y
	//      x: c: b: [string]: b: y
	//      x: c: b: b: b: y
	//      ....       // structural cycle 1
	//      x: c: c: x // structural cycle 2
	//
	// Note that in this example there is a structural cycle at x.c.c, but we
	// would need go guarantee that cycle is detected before the algorithm
	// descends into x.c.b.
	if !found || depth != n.depth {
		// Adding this in case there is a definite cycle is unnecessary, but
		// gives somewhat better error messages.
		// We also need to add the reference again if the depth differs, as
		// the depth is used for tracking "new structure".
		// var nn *Vertex
		// if u := n.node.state.underlay; u != nil {
		// 	nn = u.node
		// }
		ci.Refs = &RefNode{
			Arc:   deref(arc),
			Ref:   x,
			Node:  deref(n.node),
			Next:  ci.Refs,
			Depth: n.depth,
		}
	}

	if !found && arc.status != evaluatingArcs {
		// No cycle.
		return ci, false
	}

	// TODO: consider if we should bail if a cycle is detected using this
	// mechanism. Ultimately, especially when the old evaluator is removed
	// and the status field purged, this should be used instead of the above.
	// if !found && arc.state.evalDepth < n.ctx.optionalMark {
	// 	// No cycle.
	// 	return ci, false
	// }

	alreadyCycle := ci.IsCyclic
	ci.IsCyclic = true

	// TODO: depth might legitimately be 0 if it is a root vertex.
	// In the worst case, this may lead to a spurious cycle.
	// Fix this by ensuring the root vertex starts with a depth of 1, for
	// instance.
	if depth > 0 {
		// Look for evidence of "new structure" to invalidate the cycle.
		// This is done by checking for non-cyclic conjuncts between the
		// current vertex up to the ancestor to which the reference points.
		// Note that the cyclic conjunct may not be marked as such, so we
		// look for at least one other non-cyclic conjunct if this is the case.
		upCount := n.depth - depth
		for p := n.node.Parent; p != nil; p = p.Parent {
			if upCount--; upCount <= 0 {
				break
			}
			a := p.Conjuncts
			count := 0
			for _, c := range a {
				count += getNonCyclicCount(c)
			}
			if !alreadyCycle {
				count--
			}
			if count > 0 {
				return ci, false
			}
		}
	}

	n.hasAnyCyclicConjunct = true
	if !n.hasNonCycle && env != nil {
		// TODO: investigate if we can get rid of cyclicConjuncts in the new
		// evaluator.
		v := Conjunct{env, x, ci}
		if n.ctx.isDevVersion() {
			n.node.cc().incDependent(n.ctx, DEFER, nil)
		}
		n.cyclicConjuncts = append(n.cyclicConjuncts, cyclicConjunct{v, arc})
		return ci, true
	}

	return ci, false
}

func getNonCyclicCount(c Conjunct) int {
	switch a, ok := c.x.(*ConjunctGroup); {
	case ok:
		count := 0
		for _, c := range *a {
			count += getNonCyclicCount(c)
		}
		return count

	case !c.CloseInfo.IsCyclic:
		return 1

	default:
		return 0
	}
}

// updateCyclicStatusV3 looks for proof of non-cyclic conjuncts to override
// a structural cycle.
func (n *nodeContext) updateCyclicStatusV3(c CloseInfo) {
	if !c.IsCyclic {
		n.hasNonCycle = true
		for _, c := range n.cyclicConjuncts {
			ci := c.c.CloseInfo
			ci.cc = n.node.rootCloseContext(n.ctx)
			n.scheduleVertexConjuncts(c.c, c.arc, ci)
			n.node.cc().decDependent(n.ctx, DEFER, nil)
		}
		n.cyclicConjuncts = n.cyclicConjuncts[:0]
	}
}

// updateCyclicStatus looks for proof of non-cyclic conjuncts to override
// a structural cycle.
func (n *nodeContext) updateCyclicStatus(c CloseInfo) {
	unreachableForDev(n.ctx)

	if !c.IsCyclic {
		n.hasNonCycle = true
		for _, c := range n.cyclicConjuncts {
			n.addVertexConjuncts(c.c, c.arc, false)
		}
		n.cyclicConjuncts = n.cyclicConjuncts[:0]
	}
}

func assertStructuralCycleV3(n *nodeContext) bool {
	// TODO: is this the right place to put it?
	for range n.cyclicConjuncts {
		n.node.cc().decDependent(n.ctx, DEFER, nil)
	}
	n.cyclicConjuncts = n.cyclicConjuncts[:0]

	if n.hasOnlyCyclicConjuncts() {
		n.reportCycleError()
		return true
	}
	return false
}

func assertStructuralCycle(n *nodeContext) bool {
	if n.hasAnyCyclicConjunct && !n.hasNonCycle {
		n.reportCycleError()
		return true
	}
	return false
}

func (n *nodeContext) reportCycleError() {
	b := &Bottom{
		Code:  StructuralCycleError,
		Err:   n.ctx.Newf("structural cycle"),
		Value: n.node.Value(),
		Node:  n.node,
		// TODO: probably, this should have the referenced arc.
	}
	n.setBaseValue(CombineErrors(nil, n.node.Value(), b))
	n.node.Arcs = nil
}

// makeAnonymousConjunct creates a conjunct that tracks self-references when
// evaluating an expression.
//
// Example:
// TODO:
func makeAnonymousConjunct(env *Environment, x Expr, refs *RefNode) Conjunct {
	return Conjunct{
		env, x, CloseInfo{CycleInfo: CycleInfo{
			Inline: true,
			Refs:   refs,
		}},
	}
}

// incDepth increments the evaluation depth. This should typically be called
// before descending into a child node.
func (n *nodeContext) incDepth() {
	n.ctx.evalDepth++
}

// decDepth decrements the evaluation depth. It should be paired with a call to
// incDepth and be called after the processing of child nodes is done.
func (n *nodeContext) decDepth() {
	n.ctx.evalDepth--
}

// markOptional marks that we are about to process an "optional element" that
// allows errors. In these cases, structural cycles are not "terminal".
//
// Examples of such constructs are:
//
// Optional fields:
//
//	a: b?: a
//
// Pattern constraints:
//
//	a: [string]: a
//
// Disjunctions:
//
//	a: b: null | a
//
// A call to markOptional should be paired with a call to unmarkOptional.
func (n *nodeContext) markOptional() (saved int) {
	saved = n.ctx.evalDepth
	n.ctx.optionalMark = n.ctx.evalDepth
	return saved
}

// See markOptional.
func (n *nodeContext) unmarkOptional(saved int) {
	n.ctx.optionalMark = saved
}

// markDepth assigns the current evaluation depth to the receiving node.
// Any previously assigned depth is saved and returned and should be restored
// using unmarkDepth after processing n.
//
// When a node is encountered with a depth set to a non-zero value this
// indicates a cycle. The cycle is an evaluation cycle when the node's depth
// is equal to the current depth and a structural cycle otherwise.
func (n *nodeContext) markDepth() (saved int) {
	saved = n.evalDepth
	n.evalDepth = n.ctx.evalDepth
	return saved
}

// See markDepth.
func (n *nodeContext) unmarkDepth(saved int) {
	n.evalDepth = saved
}