1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
import (
"slices"
"cuelang.org/go/cue/errors"
"cuelang.org/go/cue/token"
)
// Nodes man not reenter a disjunction.
//
// Copy one layer deep; throw away items on failure.
// DISJUNCTION ALGORITHM
//
// The basic concept of the algorithm is to use backtracking to find valid
// disjunctions. The algorithm can stop if two matching disjuncts are found
// where one does not subsume the other.
//
// At a later point, we can introduce a filter step to filter out possible
// disjuncts based on, say, discriminator fields or field exclusivity (oneOf
// fields in Protobuf).
//
// To understand the details of the algorithm, it is important to understand
// some properties of disjunction.
//
//
// EVALUATION OF A DISJUNCTION IS SELF CONTAINED
//
// In other words, fields outside of a disjunction cannot bind to values within
// a disjunction whilst evaluating that disjunction. This allows the computation
// of disjunctions to be isolated from side effects.
//
// The intuition behind this is as follows: as a disjunction is not a concrete
// value, it is not possible to lookup a field within a disjunction if it has
// not yet been evaluated. So if a reference within a disjunction that is needed
// to disambiguate that disjunction refers to a field outside the scope of the
// disjunction which, in turn, refers to a field within the disjunction, this
// results in a cycle error. We achieve this by not removing the cycle marker of
// the Vertex of the disjunction until the disjunction is resolved.
//
// Note that the following disjunct is still allowed:
//
// a: 1
// b: a
//
// Even though `a` refers to the root of the disjunction, it does not _select
// into_ the disjunction. Implementation-wise, it also doesn't have to, as the
// respective vertex is available within the Environment. Referencing a node
// outside the disjunction that in turn selects the disjunction root, however,
// will result in a detected cycle.
//
// As usual, cycle detection should be interpreted marked as incomplete, so that
// the referring node will not be fixed to an error prematurely.
//
//
// SUBSUMPTION OF AMBIGUOUS DISJUNCTS
//
// A disjunction can be evaluated to a concrete value if only one disjunct
// remains. Aside from disambiguating through unification failure, disjuncts
// may also be disambiguated by taking the least specific of two disjuncts.
// For instance, if a subsumes b, then the result of disjunction may be a.
//
// NEW ALGORITHM NO LONGER VERIFIES SUBSUMPTION. SUBSUMPTION IS INHERENTLY
// IMPRECISE (DUE TO BULK OPTIONAL FIELDS). OTHER THAN THAT, FOR SCALAR VALUES
// IT JUST MEANS THERE IS AMBIGUITY, AND FOR STRUCTS IT CAN LEAD TO STRANGE
// CONSEQUENCES.
//
// USE EQUALITY INSTEAD:
// - Undefined == error for optional fields.
// - So only need to check exact labels for vertices.
type envDisjunct struct {
env *Environment
cloneID CloseInfo
holeID int
// fields for new evaluator
src Node
disjuncts []disjunct
// fields for old evaluator
expr *DisjunctionExpr
value *Disjunction
hasDefaults bool
// These are used for book keeping, tracking whether any of the
// disjuncts marked with a default marker remains after unification.
// If no default is used, all other elements are treated as "maybeDefault".
// Otherwise, elements are treated as is.
parentDefaultUsed bool
childDefaultUsed bool
}
func (n *nodeContext) addDisjunction(env *Environment, x *DisjunctionExpr, cloneID CloseInfo) {
// TODO: precompute
numDefaults := 0
for _, v := range x.Values {
isDef := v.Default // || n.hasDefaults(env, v.Val)
if isDef {
numDefaults++
}
}
n.disjunctions = append(n.disjunctions, envDisjunct{
env: env,
cloneID: cloneID,
expr: x,
hasDefaults: numDefaults > 0,
})
}
func (n *nodeContext) addDisjunctionValue(env *Environment, x *Disjunction, cloneID CloseInfo) {
n.disjunctions = append(n.disjunctions, envDisjunct{
env: env,
cloneID: cloneID,
value: x,
hasDefaults: x.HasDefaults,
})
}
func (n *nodeContext) expandDisjuncts(
state vertexStatus,
parent *nodeContext,
parentMode defaultMode, // default mode of this disjunct
recursive, last bool) {
unreachableForDev(n.ctx)
n.ctx.stats.Disjuncts++
// refNode is used to collect cyclicReferences for all disjuncts to be
// passed up to the parent node. Note that because the node in the parent
// context is overwritten in the course of expanding disjunction to retain
// pointer identity, it is not possible to simply record the refNodes in the
// parent directly.
var refNode *RefNode
node := n.node
defer func() {
n.node = node
}()
for n.expandOne(partial) {
}
// save node to snapShot in nodeContex
// save nodeContext.
if recursive || len(n.disjunctions) > 0 {
n.snapshot = clone(*n.node)
} else {
n.snapshot = *n.node
}
defaultOffset := len(n.usedDefault)
switch {
default: // len(n.disjunctions) == 0
m := *n
n.postDisjunct(state)
switch {
case n.hasErr():
// TODO: consider finalizing the node thusly:
// if recursive {
// n.node.Finalize(n.ctx)
// }
x := n.node
err, ok := x.BaseValue.(*Bottom)
if !ok {
err = n.getErr()
}
if err == nil {
// TODO(disjuncts): Is this always correct? Especially for partial
// evaluation it is okay for child errors to have incomplete errors.
// Perhaps introduce an Err() method.
err = x.ChildErrors
}
if err != nil {
parent.disjunctErrs = append(parent.disjunctErrs, err)
}
if recursive {
n.free()
}
return
}
if recursive {
*n = m
n.result = *n.node // XXX: n.result = snapshotVertex(n.node)?
n.node = &n.result
n.disjuncts = append(n.disjuncts, n)
}
if n.node.BaseValue == nil {
n.setBaseValue(n.getValidators(state))
}
n.usedDefault = append(n.usedDefault, defaultInfo{
parentMode: parentMode,
nestedMode: parentMode,
origMode: parentMode,
})
case len(n.disjunctions) > 0:
// Process full disjuncts to ensure that erroneous disjuncts are
// eliminated as early as possible.
state = finalized
n.disjuncts = append(n.disjuncts, n)
n.refCount++
defer n.free()
for i, d := range n.disjunctions {
a := n.disjuncts
n.disjuncts = n.buffer[:0]
n.buffer = a[:0]
last := i+1 == len(n.disjunctions)
skipNonMonotonicChecks := i+1 < len(n.disjunctions)
if skipNonMonotonicChecks {
n.ctx.inDisjunct++
}
for _, dn := range a {
switch {
case d.expr != nil:
for _, v := range d.expr.Values {
cn := dn.clone()
*cn.node = clone(dn.snapshot)
cn.node.state = cn
c := MakeConjunct(d.env, v.Val, d.cloneID)
cn.addExprConjunct(c, state)
newMode := mode(d.hasDefaults, v.Default)
cn.expandDisjuncts(state, n, newMode, true, last)
// Record the cyclicReferences of the conjunct in the
// parent list.
// TODO: avoid the copy. It should be okay to "steal"
// this list and avoid the copy. But this change is best
// done in a separate CL.
for r := n.node.cyclicReferences; r != nil; r = r.Next {
s := *r
s.Next = refNode
refNode = &s
}
}
case d.value != nil:
for i, v := range d.value.Values {
cn := dn.clone()
*cn.node = clone(dn.snapshot)
cn.node.state = cn
cn.addValueConjunct(d.env, v, d.cloneID)
newMode := mode(d.hasDefaults, i < d.value.NumDefaults)
cn.expandDisjuncts(state, n, newMode, true, last)
// See comment above.
for r := n.node.cyclicReferences; r != nil; r = r.Next {
s := *r
s.Next = refNode
refNode = &s
}
}
}
}
if skipNonMonotonicChecks {
n.ctx.inDisjunct--
}
if len(n.disjuncts) == 0 {
n.makeError()
}
if recursive || i > 0 {
for _, x := range a {
x.free()
}
}
if len(n.disjuncts) == 0 {
break
}
}
// Annotate disjunctions with whether any of the default disjunctions
// was used.
for _, d := range n.disjuncts {
for i, info := range d.usedDefault[defaultOffset:] {
if info.parentMode == isDefault {
n.disjunctions[i].parentDefaultUsed = true
}
if info.origMode == isDefault {
n.disjunctions[i].childDefaultUsed = true
}
}
}
// Combine parent and child default markers, considering that a parent
// "notDefault" is treated as "maybeDefault" if none of the disjuncts
// marked as default remain.
//
// NOTE for a parent marked as "notDefault", a child is *never*
// considered as default. It may either be "not" or "maybe" default.
//
// The result for each disjunction is conjoined into a single value.
for _, d := range n.disjuncts {
m := maybeDefault
orig := maybeDefault
for i, info := range d.usedDefault[defaultOffset:] {
parent := info.parentMode
used := n.disjunctions[i].parentDefaultUsed
childUsed := n.disjunctions[i].childDefaultUsed
hasDefaults := n.disjunctions[i].hasDefaults
orig = combineDefault(orig, info.parentMode)
orig = combineDefault(orig, info.nestedMode)
switch {
case childUsed:
// One of the children used a default. This is "normal"
// mode. This may also happen when we are in
// hasDefaults/notUsed mode. Consider
//
// ("a" | "b") & (*(*"a" | string) | string)
//
// Here the doubly nested default is called twice, once
// for "a" and then for "b", where the second resolves to
// not using a default. The first does, however, and on that
// basis the "ot default marker cannot be overridden.
m = combineDefault(m, info.parentMode)
m = combineDefault(m, info.origMode)
case !hasDefaults, used:
m = combineDefault(m, info.parentMode)
m = combineDefault(m, info.nestedMode)
case hasDefaults && !used:
Assertf(n.ctx, parent == notDefault, "unexpected default mode")
}
}
d.defaultMode = m
d.usedDefault = d.usedDefault[:defaultOffset]
d.usedDefault = append(d.usedDefault, defaultInfo{
parentMode: parentMode,
nestedMode: m,
origMode: orig,
})
}
// TODO: this is an old trick that seems no longer necessary for the new
// implementation. Keep around until we finalize the semantics for
// defaults, though. The recursion of nested defaults is not entirely
// proper yet.
//
// A better approach, that avoids the need for recursion (semantically),
// would be to only consider default usage for one level, but then to
// also allow a default to be passed if only one value is remaining.
// This means that a nested subsumption would first have to be evaluated
// in isolation, however, to determine that it is not previous
// disjunctions that cause the disambiguation.
//
// HACK alert: this replaces the hack of the previous algorithm with a
// slightly less worse hack: instead of dropping the default info when
// the value was scalar before, we drop this information when there is
// only one disjunct, while not discarding hard defaults. TODO: a more
// principled approach would be to recognize that there is only one
// default at a point where this does not break commutativity.
// if len(n.disjuncts) == 1 && n.disjuncts[0].defaultMode != isDefault {
// n.disjuncts[0].defaultMode = maybeDefault
// }
}
// Compare to root, but add to this one.
switch p := parent; {
case p != n:
p.disjunctErrs = append(p.disjunctErrs, n.disjunctErrs...)
n.disjunctErrs = n.disjunctErrs[:0]
outer:
for _, d := range n.disjuncts {
for k, v := range p.disjuncts {
// As long as a vertex isn't finalized, it may be that potential
// errors are not yet detected. This may lead two structs that
// are identical except for closedness information,
// for instance, to appear identical.
if v.result.status < finalized || d.result.status < finalized {
break
}
// Even if a node is finalized, it may still have an
// "incomplete" component that may change down the line.
if !d.done() || !v.done() {
break
}
flags := CheckStructural
if last {
flags |= IgnoreOptional
}
if Equal(n.ctx, &v.result, &d.result, flags) {
m := maybeDefault
for _, u := range d.usedDefault {
m = combineDefault(m, u.nestedMode)
}
if m == isDefault {
p.disjuncts[k] = d
v.free()
} else {
d.free()
}
continue outer
}
}
p.disjuncts = append(p.disjuncts, d)
}
n.disjuncts = n.disjuncts[:0]
}
// Record the refNodes in the parent.
for r := refNode; r != nil; {
next := r.Next
r.Next = parent.node.cyclicReferences
parent.node.cyclicReferences = r
r = next
}
}
func (n *nodeContext) makeError() {
code := IncompleteError
if len(n.disjunctErrs) > 0 {
code = EvalError
for _, c := range n.disjunctErrs {
if c.Code > code {
code = c.Code
}
}
}
b := &Bottom{
Code: code,
Err: n.disjunctError(),
Node: n.node,
}
n.node.SetValue(n.ctx, b)
}
func mode(hasDefault, marked bool) defaultMode {
var mode defaultMode
switch {
case !hasDefault:
mode = maybeDefault
case marked:
mode = isDefault
default:
mode = notDefault
}
return mode
}
// clone makes a shallow copy of a Vertex. The purpose is to create different
// disjuncts from the same Vertex under computation. This allows the conjuncts
// of an arc to be reset to a previous position and the reuse of earlier
// computations.
//
// Notes: only Arcs need to be copied recursively. Either the arc is finalized
// and can be used as is, or Structs is assumed to not yet be computed at the
// time that a clone is needed and must be nil. Conjuncts no longer needed and
// can become nil. All other fields can be copied shallowly.
func clone(v Vertex) Vertex {
v.state = nil
if a := v.Arcs; len(a) > 0 {
v.Arcs = make([]*Vertex, len(a))
for i, arc := range a {
switch arc.status {
case finalized:
v.Arcs[i] = arc
case unprocessed:
a := *arc
v.Arcs[i] = &a
a.Conjuncts = slices.Clone(arc.Conjuncts)
default:
a := *arc
a.state = arc.state.clone()
a.state.node = &a
a.state.snapshot = clone(a)
v.Arcs[i] = &a
}
}
}
if a := v.Structs; len(a) > 0 {
v.Structs = slices.Clone(a)
}
return v
}
// Default rules from spec:
//
// U1: (v1, d1) & v2 => (v1&v2, d1&v2)
// U2: (v1, d1) & (v2, d2) => (v1&v2, d1&d2)
//
// D1: (v1, d1) | v2 => (v1|v2, d1)
// D2: (v1, d1) | (v2, d2) => (v1|v2, d1|d2)
//
// M1: *v => (v, v)
// M2: *(v1, d1) => (v1, d1)
//
// NOTE: M2 cannot be *(v1, d1) => (v1, v1), as this has the weird property
// of making a value less specific. This causes issues, for instance, when
// trimming.
//
// The old implementation does something similar though. It will discard
// default information after first determining if more than one conjunct
// has survived.
//
// def + maybe -> def
// not + maybe -> def
// not + def -> def
type defaultMode int
const (
maybeDefault defaultMode = iota
isDefault
notDefault
)
// combineDefaults combines default modes for unifying conjuncts.
//
// Default rules from spec:
//
// U1: (v1, d1) & v2 => (v1&v2, d1&v2)
// U2: (v1, d1) & (v2, d2) => (v1&v2, d1&d2)
func combineDefault(a, b defaultMode) defaultMode {
if a > b {
return a
}
return b
}
// disjunctError returns a compound error for a failed disjunction.
//
// TODO(perf): the set of errors is now computed during evaluation. Eventually,
// this could be done lazily.
func (n *nodeContext) disjunctError() (errs errors.Error) {
ctx := n.ctx
disjuncts := selectErrors(n.disjunctErrs)
if disjuncts == nil {
errs = ctx.Newf("empty disjunction") // XXX: add space to sort first
} else {
disjuncts = errors.Sanitize(disjuncts)
k := len(errors.Errors(disjuncts))
if k == 1 {
return disjuncts
}
// prefix '-' to sort to top
errs = ctx.Newf("%d errors in empty disjunction:", k)
errs = errors.Append(errs, disjuncts)
}
return errs
}
func selectErrors(a []*Bottom) (errs errors.Error) {
// return all errors if less than a certain number.
if len(a) <= 2 {
for _, b := range a {
errs = errors.Append(errs, b.Err)
}
return errs
}
// First select only relevant errors.
isIncomplete := false
k := 0
for _, b := range a {
if !isIncomplete && b.Code >= IncompleteError {
k = 0
isIncomplete = true
}
a[k] = b
k++
}
a = a[:k]
// filter errors
positions := map[token.Pos]bool{}
add := func(b *Bottom, p token.Pos) bool {
if positions[p] {
return false
}
positions[p] = true
errs = errors.Append(errs, b.Err)
return true
}
for _, b := range a {
// TODO: Should we also distinguish by message type?
if add(b, b.Err.Position()) {
continue
}
for _, p := range b.Err.InputPositions() {
if add(b, p) {
break
}
}
}
return errs
}
|