1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
// Copyright 2024 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
// # Overview
//
// This files contains the disjunction algorithm of the CUE evaluator. It works
// in unison with the code in overlay.go.
//
// In principle, evaluating disjunctions is a matter of unifying each disjunct
// with the non-disjunct values, eliminate those that fail and see what is left.
// In case of multiple disjunctions it is a simple cross product of disjuncts.
// The key is how to do this efficiently.
//
// # Classification of disjunction performance
//
// The key to an efficient disjunction algorithm is to minimize the impact of
// taking cross product of disjunctions. This is especially pertinent if
// disjunction expressions can be unified with themselves, as can be the case in
// recursive definitions, as this can lead to exponential time complexity.
//
// We identify the following categories of importance for performance
// optimization:
//
// - Eliminate duplicates
// - For completed disjunctions
// - For partially computed disjuncts
// - Fail early / minimize work before failure
// - Filter disjuncts before unification (TODO)
// - Based on discriminator field
// - Based on a non-destructive unification of the disjunct and
// the current value computed so far
// - During the regular destructive unification
// - Traverse arcs where failure may occur
// - Copy on write (TODO)
//
// We discuss these aspects in more detail below.
//
// # Eliminating completed duplicates
//
// Eliminating completed duplicates can be achieved by comparing them for
// equality. A disjunct can only be considered completed if all disjuncts have
// been selected and evaluated, or at any time if processing fails.
//
// The following values should be recursively considered for equality:
//
// - the value of the node,
// - the value of its arcs,
// - the key and value of the pattern constraints, and
// - the expression of the allowed fields.
//
// In some of these cases it may not be possible to detect if two nodes are
// equal. For instance, two pattern constraints with two different regular
// expressions as patterns, but that define an identical language, should be
// considered equal. In practice, however, this is hard to distinguish.
//
// In the end this is mostly a matter of performance. As we noted, the biggest
// concern is to avoid a combinatorial explosion when disjunctions are unified
// with itself. The hope is that we can at least catch these cases, either
// because they will evaluate to the same values, or because we can identify
// that the underlying expressions are the same, or both.
//
// # Eliminating partially-computed duplicates
//
// We start with some observations and issues regarding partially evaluated
// nodes.
//
// ## Issue: Closedness
//
// Two identical CUE values with identical field, values, and pattern
// constraints, may still need to be consider as different, as they may exhibit
// different closedness behavior. Consider, for instance, this example:
//
// #def: {
// {} | {c: string} // D1
// {} | {a: string} // D2
// }
// x: #def
// x: c: "foo"
//
// Now, consider the case of the cross product that unifies the two empty
// structs for `x`. Note that `x` already has a field `c`. After unifying the
// first disjunction with `x`, both intermediate disjuncts will have the value
// `{c: "foo"}`:
//
// {c: "foo"} & ({} | {c: string})
// =>
// {c: "foo"} | {c: "foo"}
//
// One would think that one of these disjuncts can be eliminated. Nonetheless,
// there is a difference. The second disjunct, which resulted from unifying
// `{c: "foo"}` with `{c: string}`, will remain valid. The first disjunct,
// however, will fail after it is unified and completed with the `{}` of the
// second disjunctions (D2): only at this point is it known that x was unified
// with an empty closed struct, and that field `c` needs to be rejected.
//
// One possible solution would be to fully compute the cross product of `#def`
// and use this expanded disjunction for unification, as this would mean that
// full knowledge of closedness information is available.
//
// Although this is possible in some cases and can be a useful performance
// optimization, it is not always possible to use the fully evaluated disjuncts
// in such a precomputed cross product. For instance, if a disjunction relies on
// a comprehension or a default value, it is not possible to fully evaluate the
// disjunction, as merging it with another value may change the inputs for such
// expressions later on. This means that we can only rely on partial evaluation
// in some cases.
//
// ## Issue: Outstanding tasks in partial results
//
// Some tasks may not be completed until all conjuncts are known. For cross
// products of disjunctions this may mean that such tasks cannot be completed
// until all cross products are done. For instance, it is typically not possible
// to evaluate a tasks that relies on taking a default value that may change as
// more disjuncts are added. A similar argument holds for comprehensions on
// values that may still be changed as more disjunctions come in.
//
// ## Evaluating equality of partially evaluated nodes
//
// Because unevaluated expressions may depend on results that have yet to be
// computed, we cannot reliably compare the results of a Vertex to determine
// equality. We need a different strategy.
//
// The strategy we take is based on the observation that at the start of a cross
// product, the base conjunct is the same for all disjuncts. We can factor these
// inputs out and focus on the differences between the disjuncts. In other
// words, we can focus solely on the differences that manifest at the insertion
// points (or "disjunction holes") of the disjuncts.
//
// In short, two disjuncts are equal if:
//
// 1. the disjunction holes that were already processed are equal, and
// 2. they have either no outstanding tasks, or the outstanding tasks are equal
//
// Coincidentally, analyzing the differences as discussed in this section is
// very similar in nature to precomputing a disjunct and using that. The main
// difference is that we potentially have more information to prematurely
// evaluate expressions and thus to prematurely filter values. For instance, the
// mixed in value may have fixed a value that previously was not fixed. This
// means that any expression referencing this value may be evaluated early and
// can cause a disjunct to fail and be eliminated earlier.
//
// A disadvantage of this approach, however, is that it is not fully precise: it
// may not filter some disjuncts that are logically identical. There are
// strategies to further optimize this. For instance, if all remaining holes do
// not contribute to closedness, which can be determined by walking up the
// closedness parent chain, we may be able to safely filter disjuncts with equal
// results.
//
// # Invariants
//
// We use the following assumptions in the below implementation:
//
// - No more conjuncts are added to a disjunct after its processing begins.
// If a disjunction results in a value that causes more fields to be added
// later, this may not influence the result of the disjunction, i.e., those
// changes must be idempotent.
// - TODO: consider if any other assumptions are made.
//
// # Algorithm
//
// The evaluator accumulates all disjuncts of a Vertex in the nodeContext along
// with the closeContext at which each was defined. A single task is scheduled
// to process them all at once upon the first encounter of a disjunction.
//
// The algorithm is as follows:
// - Initialize the current Vertex n with the result evaluated so far as a
// list of "previous disjuncts".
// - Iterate over each disjunction
// - For each previous disjunct x
// - For each disjunct y in the current disjunctions
// - Unify
// - Discard if error, store in the list of current disjunctions if
// it differs from all other disjunctions in this list.
// - Set n to the result of the disjunction.
//
// This algorithm is recursive: if a disjunction is encountered in a disjunct,
// it is processed as part of the evaluation of that disjunct.
//
// A disjunct is the expanded form of the disjuncts of either an Disjunction or
// a DisjunctionExpr.
//
// TODO(perf): encode ADT structures in the correct form so that we do not have to
// compute these each time.
type disjunct struct {
expr Expr
err *Bottom
isDefault bool
mode defaultMode
}
// disjunctHole associates a closeContext copy representing a disjunct hole with
// the underlying closeContext from which it originally was branched.
// We could include this information in the closeContext itself, but since this
// is relatively rare, we keep it separate to avoid bloating the closeContext.
type disjunctHole struct {
cc *closeContext
holeID int
underlying *closeContext
}
func (n *nodeContext) scheduleDisjunction(d envDisjunct) {
if len(n.disjunctions) == 0 {
// This processes all disjunctions in a single pass.
n.scheduleTask(handleDisjunctions, nil, nil, CloseInfo{})
}
// ccHole is the closeContext in which the individual disjuncts are
// scheduled.
ccHole := d.cloneID.cc
// This counter can be decremented after either a disjunct has been
// scheduled in the clone. Note that it will not be closed in the original
// as the result will either be an error, a single disjunct, in which
// case mergeVertex will override the original value, or multiple disjuncts,
// in which case the original is set to the disjunct itself.
ccHole.incDisjunct(n.ctx, DISJUNCT)
ccHole.holeID = d.holeID
n.disjunctions = append(n.disjunctions, d)
n.disjunctCCs = append(n.disjunctCCs, disjunctHole{
cc: ccHole, // this value is cloned in doDisjunct.
holeID: d.holeID,
underlying: ccHole,
})
}
func initArcs(ctx *OpContext, v *Vertex) bool {
ok := true
for _, a := range v.Arcs {
s := a.getState(ctx)
if s != nil && s.errs != nil {
ok = false
if a.ArcType == ArcMember {
break
}
} else if !initArcs(ctx, a) {
ok = false
}
}
return ok
}
func (n *nodeContext) processDisjunctions() *Bottom {
ID := n.pushDisjunctionTask()
defer ID.pop()
defer func() {
// TODO:
// Clear the buffers.
// TODO: we may want to retain history of which disjunctions were
// processed. In that case we can set a disjunction position to end
// of the list and schedule new tasks if this position equals the
// disjunction list length.
}()
a := n.disjunctions
n.disjunctions = n.disjunctions[:0]
holes := make([]disjunctHole, len(n.disjunctCCs))
copy(holes, n.disjunctCCs)
// Upon completion, decrement the DISJUNCT counters that were incremented
// in scheduleDisjunction. Note that this disjunction may be a copy of the
// original, in which case we need to decrement the copied disjunctCCs, not
// the original.
//
// This is not strictly necessary, but it helps for balancing counters.
// TODO: Consider disabling this when DebugDeps is not set.
defer func() {
// We add a "top" value to disable closedness checking for this
// disjunction to avoid a spurious "field not allowed" error.
// We return the errors below, which will, in turn, be reported as
// the error.
for i, d := range a {
// TODO(perf: prove that holeIDs are always stored in increasing
// order and allow for an incremental search to reduce cost.
for _, h := range holes {
if h.holeID != a[i].holeID {
continue
}
cc := h.cc
id := a[i].cloneID
id.cc = cc
c := MakeConjunct(d.env, top, id)
n.scheduleConjunct(c, d.cloneID)
cc.decDisjunct(n.ctx, DISJUNCT)
break
}
}
}()
if !initArcs(n.ctx, n.node) {
return n.getError()
}
// If the disjunct of an enclosing disjunction operation has an attemptOnly
// runMode, this disjunct should have this also and may not finalize.
// Finalization may cause incoming dependencies to be broken. If an outer
// disjunction still has open holes, this means that more conjuncts may be
// incoming and that finalization would prematurely prevent those from being
// added. In practice, this may result in the infamous "already closed"
// panic.
var outerRunMode runMode
for p := n.node; p != nil; p = p.Parent {
if p.IsDisjunct {
outerRunMode = p.state.runMode
break
}
}
// TODO(perf): single pass for quick filter on all disjunctions.
// n.node.unify(n.ctx, allKnown, attemptOnly)
// Initially we compute the cross product of a disjunction with the
// nodeContext as it is processed so far.
cross := []*nodeContext{n}
results := []*nodeContext{} // TODO: use n.disjuncts as buffer.
// Slow path for processing all disjunctions. Do not use `range` in case
// evaluation adds more disjunctions.
for i := 0; i < len(a); i++ {
d := &a[i]
n.nextDisjunction(i, len(a), d.holeID)
// We need to only finalize the last series of disjunctions. However,
// disjunctions can be nested.
mode := attemptOnly
switch {
case outerRunMode != 0:
mode = outerRunMode
if i < len(a)-1 {
mode = attemptOnly
}
case i == len(a)-1:
mode = finalize
}
// Mark no final in nodeContext and observe later.
results = n.crossProduct(results, cross, d, mode, d.holeID)
// TODO: do we unwind only at the end or also intermittently?
switch len(results) {
case 0:
// TODO: now we have disjunct counters, do we plug holes at all?
// Empty intermediate result. Further processing will not result in
// any new result, so we can terminate here.
// TODO(errors): investigate remaining disjunctions for errors.
return n.collectErrors(d)
case 1:
// TODO: consider injecting the disjuncts into the main nodeContext
// here. This would allow other values that this disjunctions
// depends on to be evaluated. However, we should investigate
// whether this might lead to a situation where the order of
// evaluating disjunctions matters. So to be safe, we do not allow
// this for now.
}
// switch up buffers.
cross, results = results, cross[:0]
}
switch len(cross) {
case 0:
panic("unreachable: empty disjunction already handled above")
case 1:
d := cross[0].node
n.setBaseValue(d)
n.defaultMode = cross[0].defaultMode
default:
// append, rather than assign, to allow reusing the memory of
// a pre-existing slice.
n.disjuncts = append(n.disjuncts, cross...)
}
var completed condition
numDefaults := 0
if len(n.disjuncts) == 1 {
completed = n.disjuncts[0].completed
}
for _, d := range n.disjuncts {
if d.defaultMode == isDefault {
numDefaults++
completed = d.completed
}
}
if numDefaults == 1 || len(n.disjuncts) == 1 {
n.signal(completed)
}
return nil
}
// crossProduct computes the cross product of the disjuncts of a disjunction
// with an existing set of results.
func (n *nodeContext) crossProduct(dst, cross []*nodeContext, dn *envDisjunct, mode runMode, hole int) []*nodeContext {
defer n.unmarkDepth(n.markDepth())
defer n.unmarkOptional(n.markOptional())
for i, p := range cross {
ID := n.nextCrossProduct(i, len(cross), p)
// TODO: use a partial unify instead
// p.completeNodeConjuncts()
initArcs(n.ctx, p.node)
for j, d := range dn.disjuncts {
ID.node.nextDisjunct(j, len(dn.disjuncts), d.expr)
c := MakeConjunct(dn.env, d.expr, dn.cloneID)
r, err := p.doDisjunct(c, d.mode, mode, hole)
if err != nil {
// TODO: store more error context
dn.disjuncts[j].err = err
continue
}
// Unroll nested disjunctions.
switch len(r.disjuncts) {
case 0:
// r did not have a nested disjunction.
dst = appendDisjunct(n.ctx, dst, r)
case 1:
panic("unexpected number of disjuncts")
default:
for _, x := range r.disjuncts {
dst = appendDisjunct(n.ctx, dst, x)
}
}
}
}
return dst
}
// collectErrors collects errors from a failed disjunctions.
func (n *nodeContext) collectErrors(dn *envDisjunct) (errs *Bottom) {
code := EvalError
for _, d := range dn.disjuncts {
if b := d.err; b != nil {
n.disjunctErrs = append(n.disjunctErrs, b)
if b.Code > code {
code = b.Code
}
}
}
b := &Bottom{
Code: code,
Err: n.disjunctError(),
Node: n.node,
}
return b
}
func (n *nodeContext) doDisjunct(c Conjunct, m defaultMode, mode runMode, hole int) (*nodeContext, *Bottom) {
if c.CloseInfo.cc == nil {
panic("nil closeContext during init")
}
ID := n.logDoDisjunct()
_ = ID // Do not remove, used for debugging.
oc := newOverlayContext(n.ctx)
var ccHole *closeContext
// TODO(perf): resuse buffer, for instance by keeping a buffer handy in oc
// and then swapping it with disjunctCCs in the new nodeContext.
holes := make([]disjunctHole, 0, len(n.disjunctCCs))
// Complete as much of the pending work of this node and its parent before
// copying. Note that once a copy is made, the disjunct is no longer able
// to receive conjuncts from the original.
n.completeNodeTasks(mode)
// TODO: we may need to process incoming notifications for all arcs in
// the copied disjunct, but only those notifications not coming from
// within the arc itself.
// Clone the closeContexts of all open disjunctions and dependencies.
for _, d := range n.disjunctCCs {
// TODO: remove filled holes.
// Note that the root is already cloned as part of cloneVertex and that
// a closeContext corresponding to a disjunction always has a parent.
// We therefore do not need to check whether x.parent is nil.
o := oc.allocCC(d.cc)
if hole == d.holeID {
ccHole = o
if d.cc.conjunctCount == 0 {
panic("unexpected zero conjunctCount")
}
}
holes = append(holes, disjunctHole{o, d.holeID, d.underlying})
}
if ccHole == nil {
panic("expected non-nil overlay closeContext")
}
n.scheduler.blocking = n.scheduler.blocking[:0]
d := oc.cloneRoot(n)
d.runMode = mode
d.defaultMode = combineDefault(m, n.defaultMode)
v := d.node
defer n.setBaseValue(n.swapBaseValue(v))
// Clear relevant scheduler states.
// TODO: do something more principled: just ensure that a node that has
// not all holes filled out yet is not finalized. This may require
// a special mode, or evaluating more aggressively if finalize is not given.
v.status = unprocessed
d.overlays = n
d.disjunctCCs = append(d.disjunctCCs, holes...)
d.disjunct = c
c.CloseInfo.cc = ccHole
d.scheduleConjunct(c, c.CloseInfo)
ccHole.decDisjunct(n.ctx, DISJUNCT)
oc.unlinkOverlay()
v.unify(n.ctx, allKnown, mode)
if err := d.getErrorAll(); err != nil && !isCyclePlaceholder(err) {
d.free()
return nil, err
}
d = d.node.DerefDisjunct().state
return d, nil
}
func (n *nodeContext) finalizeDisjunctions() {
if len(n.disjuncts) == 0 {
return
}
// TODO: we clear the Conjuncts to be compatible with the old evaluator.
// This is especially relevant for the API. Ideally, though, we should
// update Conjuncts to reflect the actual conjunct that went into the
// disjuncts.
for _, x := range n.disjuncts {
x.node.Conjuncts = nil
}
a := make([]Value, len(n.disjuncts))
p := 0
hasDefaults := false
for i, x := range n.disjuncts {
switch x.defaultMode {
case isDefault:
a[i] = a[p]
a[p] = x.node
p++
hasDefaults = true
case notDefault:
hasDefaults = true
fallthrough
case maybeDefault:
a[i] = x.node
}
}
d := &Disjunction{
Values: a,
NumDefaults: p,
HasDefaults: hasDefaults,
}
v := n.node
n.setBaseValue(d)
// The conjuncts will have too much information. Better have no
// information than incorrect information.
v.Arcs = nil
v.ChildErrors = nil
}
func (n *nodeContext) getErrorAll() *Bottom {
err := n.getError()
if err != nil {
return err
}
for _, a := range n.node.Arcs {
if a.ArcType > ArcRequired || a.Label.IsLet() {
return nil
}
n := a.getState(n.ctx)
if n != nil {
if err := n.getErrorAll(); err != nil {
return err
}
}
}
return nil
}
func (n *nodeContext) getError() *Bottom {
if b := n.node.Bottom(); b != nil && !isCyclePlaceholder(b) {
return b
}
if n.node.ChildErrors != nil {
return n.node.ChildErrors
}
if errs := n.errs; errs != nil {
return errs
}
if n.ctx.errs != nil {
return n.ctx.errs
}
return nil
}
// appendDisjunct appends a disjunct x to a, if it is not a duplicate.
func appendDisjunct(ctx *OpContext, a []*nodeContext, x *nodeContext) []*nodeContext {
if x == nil {
return a
}
nv := x.node.DerefValue()
nx := nv.BaseValue
if nx == nil || isCyclePlaceholder(nx) {
nx = x.getValidators(finalized)
}
// check uniqueness
// TODO: if a node is not finalized, we could check that the parent
// (overlayed) closeContexts are identical.
outer:
for _, xn := range a {
xv := xn.node.DerefValue()
if xv.status != finalized || nv.status != finalized {
// Partial node
// TODO: we could consider supporting an option here to disable
// the filter. This way, if there is a bug, users could disable
// it, trading correctness for performance.
// If enabled, we would simply "continue" here.
for i, h := range xn.disjunctCCs {
// TODO(perf): only iterate over completed
// TODO(evalv3): we now have a double loop to match the
// disjunction holes. It should be possible to keep them
// aligned and avoid the inner loop.
for _, g := range x.disjunctCCs {
if h.underlying == g.underlying {
x, y := findIntersections(h.cc, x.disjunctCCs[i].cc)
if !equalPartialNode(xn.ctx, x, y) {
continue outer
}
}
}
}
if len(xn.tasks) != xn.taskPos || len(x.tasks) != x.taskPos {
if len(xn.tasks) != len(x.tasks) {
continue
}
}
for i, t := range xn.tasks[xn.taskPos:] {
s := x.tasks[i]
if s.x != t.x || s.id.cc != t.id.cc {
continue outer
}
}
vx, okx := nx.(Value)
ny := xv.BaseValue
if ny == nil || isCyclePlaceholder(ny) {
ny = x.getValidators(finalized)
}
vy, oky := ny.(Value)
if okx && oky && !Equal(ctx, vx, vy, CheckStructural) {
continue outer
}
} else {
// Complete nodes.
if !Equal(ctx, xn.node.DerefValue(), x.node.DerefValue(), CheckStructural) {
continue outer
}
}
// free vertex
if x.defaultMode == isDefault {
xn.defaultMode = isDefault
}
// TODO: x.free()
return a
}
return append(a, x)
}
// findIntersections reports the closeContext, relative to the two given
// disjunction holes, that should be used in comparing the arc set.
// x and y MUST both be originating from the same disjunct hole. This ensures
// that the depth of the parent chain is the same and that they have the
// same underlying closeContext.
//
// Currently, we just take the parent. We should investigate if that is always
// sufficient.
//
// Tradeoffs: if we do not go up enough, the two nodes may not be equal and we
// miss the opportunity to filter. On the other hand, if we go up too far, we
// end up comparing more arcs than potentially necessary.
//
// TODO: Add a unit test when this function is fully implemented.
func findIntersections(x, y *closeContext) (cx, cy *closeContext) {
cx = x.parent
cy = y.parent
// TODO: why could this happen? Investigate. Note that it is okay to just
// return x and y. In the worst case we will just miss some possible
// deduplication.
if cx == nil || cy == nil {
return x, y
}
return cx, cy
}
func equalPartialNode(ctx *OpContext, x, y *closeContext) bool {
nx := x.src.getState(ctx)
ny := y.src.getState(ctx)
if nx == nil && ny == nil {
// Both nodes were finalized. We can compare them directly.
return Equal(ctx, x.src, y.src, CheckStructural)
}
// TODO: process the nodes with allKnown, attemptOnly.
if nx == nil || ny == nil {
return false
}
if !isEqualNodeValue(nx, ny) {
return false
}
if len(x.Patterns) != len(y.Patterns) {
return false
}
// Assume patterns are in the same order.
for i, p := range x.Patterns {
if !Equal(ctx, p, y.Patterns[i], 0) {
return false
}
}
if !Equal(ctx, x.Expr, y.Expr, 0) {
return false
}
if len(x.arcs) != len(y.arcs) {
return false
}
// TODO(perf): use merge sort
outer:
for _, a := range x.arcs {
for _, b := range y.arcs {
if a.root.src.Label != b.root.src.Label {
continue
}
if !equalPartialNode(ctx, a.dst, b.dst) {
return false
}
continue outer
}
return false
}
return true
}
// isEqualNodeValue reports whether the two nodes are of the same type and have
// the same value.
//
// TODO: this could be done much more cleanly if we are more deligent in early
// evaluation.
func isEqualNodeValue(x, y *nodeContext) bool {
xk := x.kind
yk := y.kind
// If a node is mid evaluation, the kind might not be actual if the type is
// a struct, as whether a struct is a struct kind or an embedded type is
// determined later. This is just a limitation of the current
// implementation, we should update the kind more directly so that this code
// is not necessary.
// TODO: verify that this is still necessary and if so fix it so that this
// can be removed.
if x.aStruct != nil {
xk &= StructKind
}
if y.aStruct != nil {
yk &= StructKind
}
if xk != yk {
return false
}
if x.hasTop != y.hasTop {
return false
}
if !isEqualValue(x.ctx, x.scalar, y.scalar) {
return false
}
// Do some quick checks first.
if len(x.checks) != len(y.checks) {
return false
}
if len(x.tasks) != x.taskPos || len(y.tasks) != y.taskPos {
if len(x.tasks) != len(y.tasks) {
return false
}
}
if !isEqualValue(x.ctx, x.lowerBound, y.lowerBound) {
return false
}
if !isEqualValue(x.ctx, x.upperBound, y.upperBound) {
return false
}
// Assume that checks are added in the same order.
for i, c := range x.checks {
d := y.checks[i]
if !Equal(x.ctx, c.x.(Value), d.x.(Value), CheckStructural) {
return false
}
}
for i, t := range x.tasks[x.taskPos:] {
s := y.tasks[i]
if s.x != t.x {
return false
}
if s.id.cc != t.id.cc {
// FIXME: we should compare this too. For this to work we need to
// have access to the underlying closeContext, which we do not
// have at the moment.
// return false
}
}
return true
}
type ComparableValue interface {
comparable
Value
}
func isEqualValue[P ComparableValue](ctx *OpContext, x, y P) bool {
var zero P
if x == y {
return true
}
if x == zero || y == zero {
return false
}
return Equal(ctx, x, y, CheckStructural)
}
|