1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
|
// Copyright 2021 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package eval contains the high level CUE evaluation strategy.
//
// CUE allows for a significant amount of freedom in order of evaluation due to
// the commutativity of the unification operation. This package implements one
// of the possible strategies.
package adt
// TODO:
// - result should be nodeContext: this allows optionals info to be extracted
// and computed.
//
import (
"fmt"
"cuelang.org/go/cue/ast"
"cuelang.org/go/cue/errors"
"cuelang.org/go/cue/stats"
"cuelang.org/go/cue/token"
)
// TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO TODO
//
// - Reuse work from previous cycles. For instance, if we can guarantee that a
// value is always correct for partial results, we can just process the arcs
// going from Partial to Finalized, without having to reevaluate the value.
//
// - Test closedness far more thoroughly.
//
func (c *OpContext) Stats() *stats.Counts {
return &c.stats
}
// TODO: Note: NewContext takes essentially a cue.Value. By making this
// type more central, we can perhaps avoid context creation.
// func NewContext(r Runtime, v *Vertex) *OpContext {
// e := NewUnifier(r)
// return e.NewContext(v)
// }
var incompleteSentinel = &Bottom{
Code: IncompleteError,
Err: errors.Newf(token.NoPos, "incomplete"),
}
// evaluate returns the evaluated value associated with v. It may return a
// partial result. That is, if v was not yet unified, it may return a
// concrete value that must be the result assuming the configuration has no
// errors.
//
// This semantics allows CUE to break reference cycles in a straightforward
// manner.
//
// Vertex v must still be evaluated at some point to catch the underlying
// error.
//
// TODO: return *Vertex
func (c *OpContext) evaluate(v *Vertex, r Resolver, state combinedFlags) Value {
if v.isUndefined() {
// Use node itself to allow for cycle detection.
c.unify(v, state)
if v.ArcType == ArcPending {
if v.status == evaluating {
for ; v.Parent != nil && v.ArcType == ArcPending; v = v.Parent {
}
err := c.Newf("cycle with field %v", r)
b := &Bottom{
Code: CycleError,
Err: err,
Node: v,
}
v.setValue(c, v.status, b)
return b
// TODO: use this instead, as is usual for incomplete errors,
// and also move this block one scope up to also apply to
// defined arcs. In both cases, though, doing so results in
// some errors to be misclassified as evaluation error.
// c.AddBottom(b)
// return nil
}
c.undefinedFieldError(v, IncompleteError)
return nil
}
}
if n := v.state; n != nil {
n.assertInitialized()
if n.errs != nil && !n.errs.IsIncomplete() {
return n.errs
}
if n.scalar != nil && isCyclePlaceholder(v.BaseValue) {
return n.scalar
}
}
switch x := v.BaseValue.(type) {
case *Bottom:
if x.IsIncomplete() {
c.AddBottom(x)
return nil
}
return x
case nil:
if v.state != nil {
switch x := v.state.getValidators(finalized).(type) {
case Value:
return x
default:
w := *v
w.BaseValue = x
return &w
}
}
// This may happen if the evaluator is invoked outside of regular
// evaluation, such as in dependency analysis.
return nil
}
if v.status < finalized && v.state != nil && !c.isDevVersion() {
// TODO: errors are slightly better if we always add addNotify, but
// in this case it is less likely to cause a performance penalty.
// See https://cuelang.org/issue/661. It may be possible to
// relax this again once we have proper tests to prevent regressions of
// that issue.
if !v.state.done() || v.state.errs != nil {
v.state.addNotify(c.vertex, nil)
}
}
return v
}
// unify unifies values of a Vertex to and stores the result in the Vertex. If
// unify was called on v before it returns the cached results.
// state can be used to indicate to which extent processing should continue.
// state == finalized means it is evaluated to completion. See vertexStatus
// for more details.
func (c *OpContext) unify(v *Vertex, flags combinedFlags) {
if c.isDevVersion() {
requires, mode := flags.conditions(), flags.runMode()
v.unify(c, requires, mode)
return
}
// defer c.PopVertex(c.PushVertex(v))
if c.LogEval > 0 {
c.nest++
c.Logf(v, "Unify")
defer func() {
c.Logf(v, "END Unify")
c.nest--
}()
}
// Ensure a node will always have a nodeContext after calling Unify if it is
// not yet Finalized.
n := v.getNodeContext(c, 1)
defer v.freeNode(n)
state := flags.vertexStatus()
// TODO(cycle): verify this happens in all cases when we need it.
if n != nil && v.Parent != nil && v.Parent.state != nil {
n.depth = v.Parent.state.depth + 1
}
if state <= v.Status() &&
state == partial &&
v.isDefined() &&
n != nil && n.scalar != nil {
return
}
switch v.Status() {
case evaluating:
n.insertConjuncts(state)
return
case evaluatingArcs:
Assertf(c, v.status > unprocessed, "unexpected status %d", v.status)
return
case 0:
if v.Label.IsDef() {
v.ClosedRecursive = true
}
if v.Parent != nil {
if v.Parent.ClosedRecursive {
v.ClosedRecursive = true
}
}
defer c.PopArc(c.PushArc(v))
v.updateStatus(evaluating)
if p := v.Parent; p != nil && p.state != nil && v.Label.IsString() {
for _, s := range p.state.node.Structs {
if s.Disable {
continue
}
s.MatchAndInsert(n.ctx, v)
}
}
c.stats.Unifications++
// Set the cache to a cycle error to ensure a cyclic reference will result
// in an error if applicable. A cyclic error may be ignored for
// non-expression references. The cycle error may also be removed as soon
// as there is evidence what a correct value must be, but before all
// validation has taken place.
//
// TODO(cycle): having a more recursive algorithm would make this
// special cycle handling unnecessary.
v.BaseValue = cycle
if c.HasErr() {
n.addBottom(c.errs)
}
// NOTE: safeguard against accidentally entering the 'unprocessed' state
// twice.
n.conjuncts = n.conjuncts[:0]
for i, c := range v.Conjuncts {
n.addConjunction(c, i)
}
if n.insertConjuncts(state) {
n.maybeSetCache()
v.updateStatus(partial)
return
}
fallthrough
case partial, conjuncts:
// TODO: remove this optimization or make it correct.
// No need to do further processing when we have errors and all values
// have been considered.
// TODO: is checkClosed really still necessary here?
if v.status == conjuncts && (n.hasErr() || !n.checkClosed(state)) {
if err := n.getErr(); err != nil {
b, _ := v.BaseValue.(*Bottom)
v.BaseValue = CombineErrors(nil, b, err)
}
break
}
defer c.PopArc(c.PushArc(v))
n.insertConjuncts(state)
v.status = evaluating
// Use maybeSetCache for cycle breaking
for n.maybeSetCache(); n.expandOne(partial); n.maybeSetCache() {
}
n.doNotify()
if !n.done() {
switch {
case state < conjuncts:
n.node.updateStatus(partial)
return
case state == conjuncts:
if err := n.incompleteErrors(true); err != nil && err.Code < CycleError {
n.node.AddErr(c, err)
} else {
n.node.updateStatus(partial)
}
return
}
}
// Disjunctions should always be finalized. If there are nested
// disjunctions the last one should be finalized.
disState := state
if len(n.disjunctions) > 0 && disState != finalized {
disState = finalized
}
n.expandDisjuncts(disState, n, maybeDefault, false, true)
n.finalizeDisjuncts()
switch len(n.disjuncts) {
case 0:
case 1:
x := n.disjuncts[0].result
x.state = nil
x.cyclicReferences = n.node.cyclicReferences
*v = x
default:
d := n.createDisjunct()
v.BaseValue = d
// The conjuncts will have too much information. Better have no
// information than incorrect information.
for _, d := range d.Values {
d, ok := d.(*Vertex)
if !ok {
continue
}
// We clear the conjuncts for now. As these disjuncts are for API
// use only, we will fill them out when necessary (using Defaults).
d.Conjuncts = nil
// TODO: use a more principled form of dereferencing. For instance,
// disjuncts could already be assumed to be the given Vertex, and
// the main vertex could be dereferenced during evaluation.
for _, a := range d.Arcs {
for _, x := range a.Conjuncts {
// All the environments for embedded structs need to be
// dereferenced.
for env := x.Env; env != nil && env.Vertex == v; env = env.Up {
env.Vertex = d
}
}
}
}
v.Arcs = nil
v.ChildErrors = nil
// v.Structs = nil // TODO: should we keep or discard the Structs?
// TODO: how to represent closedness information? Do we need it?
}
// If the state has changed, it is because a disjunct has been run, or
// because a single disjunct has replaced it. Restore the old state as
// to not confuse memory management.
v.state = n
// We don't do this in postDisjuncts, as it should only be done after
// completing all disjunctions.
if !n.done() {
if err := n.incompleteErrors(true); err != nil {
b := n.node.Bottom()
if b != err {
err = CombineErrors(n.ctx.src, b, err)
}
n.node.BaseValue = err
}
}
assertStructuralCycle(n)
if state != finalized {
return
}
if v.BaseValue == nil {
v.BaseValue = n.getValidators(finalized)
}
// Free memory here?
v.updateStatus(finalized)
case finalized:
}
}
// insertConjuncts inserts conjuncts previously not inserted.
func (n *nodeContext) insertConjuncts(state vertexStatus) bool {
unreachableForDev(n.ctx)
// Exit early if we have a concrete value and only need partial results.
if state == partial {
for n.conjunctsPartialPos < len(n.conjuncts) {
c := &n.conjuncts[n.conjunctsPartialPos]
n.conjunctsPartialPos++
if c.done {
continue
}
if v, ok := c.C.Elem().(Value); ok && IsConcrete(v) {
c.done = true
n.addValueConjunct(c.C.Env, v, c.C.CloseInfo)
}
}
if n.scalar != nil && n.node.isDefined() {
return true
}
}
for n.conjunctsPos < len(n.conjuncts) {
nInfos := len(n.node.Structs)
p := &n.conjuncts[n.conjunctsPos]
n.conjunctsPos++
if p.done {
continue
}
// Initially request a Partial state to allow cyclic references to
// resolve more naturally first. This results in better error messages
// and less operations.
n.addExprConjunct(p.C, partial)
p.done = true
// Record the OptionalTypes for all structs that were inferred by this
// Conjunct. This information can be used by algorithms such as trim.
for i := nInfos; i < len(n.node.Structs); i++ {
n.node.Conjuncts[p.index].CloseInfo.FieldTypes |= n.node.Structs[i].types
}
}
return false
}
// finalizeDisjuncts: incomplete errors are kept around and not removed early.
// This call filters the incomplete errors and removes them
//
// This also collects all errors of empty disjunctions. These cannot be
// collected during the finalization state of individual disjuncts. Care should
// be taken to only call this after all disjuncts have been finalized.
func (n *nodeContext) finalizeDisjuncts() {
a := n.disjuncts
if len(a) == 0 {
return
}
k := 0
for i, d := range a {
switch d.finalDone() {
case true:
a[k], a[i] = d, a[k]
k++
default:
if err := d.incompleteErrors(true); err != nil {
n.disjunctErrs = append(n.disjunctErrs, err)
}
}
d.free()
}
if k == 0 {
n.makeError()
}
n.disjuncts = a[:k]
}
func (n *nodeContext) doNotify() {
if n.errs == nil || len(n.notify) == 0 {
return
}
for _, rec := range n.notify {
v := rec.v
if v.state == nil {
if b := v.Bottom(); b != nil {
v.BaseValue = CombineErrors(nil, b, n.errs)
} else {
v.BaseValue = n.errs
}
} else {
v.state.addBottom(n.errs)
}
}
n.notify = n.notify[:0]
}
func (n *nodeContext) postDisjunct(state vertexStatus) {
ctx := n.ctx
unreachableForDev(ctx)
for {
// Use maybeSetCache for cycle breaking
for n.maybeSetCache(); n.expandOne(state); n.maybeSetCache() {
}
if !n.addLists(oldOnly(state)) {
break
}
}
if n.aStruct != nil {
n.updateNodeType(StructKind, n.aStruct, n.aStructID)
}
if len(n.selfComprehensions) > 0 {
// Up to here all comprehensions with sources other than this node will
// have had a chance to run. We can now run self-referencing
// comprehensions with the restriction that they cannot add new arcs.
//
// Note: we should only set this in case of self-referential
// comprehensions. A comprehension in a parent node may still add
// arcs to this node, even if it has reached AllConjunctsDone status,
// as long as any evaluation did not rely on its specific set of arcs.
// Example:
//
// a: {
// b: _env: c: 1
//
// // Using dynamic field ("b") prevents the evaluation of the
// // comprehension to be pushed down to env: and instead evaluates
// // it before b is completed. Even though b needs to reach state
// // AllConjunctsDone before evaluating b._env, it is still okay
// // to add arcs to b after this evaluation: only the set of arcs
// // in b._env needs to be frozen after that.
// for k2, v2 in b._env {
// ("b"): env: (k2): v2
// }
// }
n.node.LockArcs = true
n.injectSelfComprehensions(state)
}
for n.expandOne(state) {
}
switch err := n.getErr(); {
case err != nil:
if err.Code < IncompleteError && n.node.ArcType == ArcPending {
n.node.ArcType = ArcMember
}
n.node.BaseValue = err
n.errs = nil
default:
if isCyclePlaceholder(n.node.BaseValue) {
if !n.done() {
n.node.BaseValue = n.incompleteErrors(true)
} else {
n.node.BaseValue = nil
}
}
// TODO: this ideally should be done here. However, doing so causes
// a somewhat more aggressive cutoff in disjunction cycles, which cause
// some incompatibilities. Fix in another CL.
//
// else if !n.done() {
// n.expandOne()
// if err := n.incompleteErrors(); err != nil {
// n.node.BaseValue = err
// }
// }
// We are no longer evaluating.
n.validateValue(state)
v := n.node.Value()
// TODO(perf): only delay processing of actual non-monotonic checks.
skip := n.skipNonMonotonicChecks()
if v != nil && IsConcrete(v) && !skip {
for _, v := range n.checks {
// TODO(errors): make Validate return bottom and generate
// optimized conflict message. Also track and inject IDs
// to determine origin location.s
if b := ctx.Validate(v, n.node); b != nil {
n.addBottom(b)
}
}
}
if v == nil {
break
}
switch {
case v.Kind() == ListKind:
for _, a := range n.node.Arcs {
if a.Label.Typ() == StringLabel && a.IsDefined(ctx) {
n.addErr(ctx.Newf("list may not have regular fields"))
// TODO(errors): add positions for list and arc definitions.
}
}
// case !isStruct(n.node) && v.Kind() != BottomKind:
// for _, a := range n.node.Arcs {
// if a.Label.IsRegular() {
// n.addErr(errors.Newf(token.NoPos,
// // TODO(errors): add positions of non-struct values and arcs.
// "cannot combine scalar values with arcs"))
// }
// }
}
}
n.completeArcs(state)
}
// validateValue checks collected bound validators and checks them against
// the current value. If there is no value, it sets the current value
// to these validators itself.
//
// Before it does this, it also checks whether n is of another incompatible
// type, like struct. This prevents validators from being inadvertently set.
// TODO(evalv3): optimize this function for new implementation.
func (n *nodeContext) validateValue(state vertexStatus) {
ctx := n.ctx
// Either set to Conjunction or error.
// TODO: verify and simplify the below code to determine whether
// something is a struct.
markStruct := false
if n.aStruct != nil {
markStruct = true
} else if len(n.node.Structs) > 0 {
// TODO: do something more principled here.
// Here we collect evidence that a value is a struct. If a struct has
// an embedding, it may evaluate to an embedded scalar value, in which
// case it is not a struct. Right now this is tracked at the node level,
// but it really should be at the struct level. For instance:
//
// A: matchN(1, [>10])
// A: {
// if true {c: 1}
// }
//
// Here A is marked as Top by matchN. The other struct also has an
// embedding (the comprehension), and thus does not force it either.
// So the resulting kind is top, not struct.
// As an approximation, we at least mark the node as a struct if it has
// any regular fields.
markStruct = n.kind&StructKind != 0 && !n.hasTop
for _, a := range n.node.Arcs {
// TODO(spec): we generally allow optional fields alongside embedded
// scalars. We probably should not. Either way this is not entirely
// accurate, as a Pending arc may still be optional. We should
// collect the arcType noted in adt.Comprehension in a nodeContext
// as well so that we know what the potential arc of this node may
// be.
//
// TODO(evalv3): even better would be to ensure that all
// comprehensions are done before calling this.
if a.Label.IsRegular() && a.ArcType != ArcOptional {
markStruct = true
break
}
}
}
v := n.node.DerefValue().Value()
if n.node.BaseValue == nil && markStruct {
n.node.BaseValue = &StructMarker{}
v = n.node
}
if v != nil && IsConcrete(v) {
// Also check when we already have errors as we may find more
// serious errors and would like to know about all errors anyway.
if n.lowerBound != nil {
c := MakeRootConjunct(nil, n.lowerBound)
if b := ctx.Validate(c, v); b != nil {
// TODO(errors): make Validate return boolean and generate
// optimized conflict message. Also track and inject IDs
// to determine origin location.s
if e, _ := b.Err.(*ValueError); e != nil {
e.AddPosition(n.lowerBound)
e.AddPosition(v)
}
n.addBottom(b)
}
}
if n.upperBound != nil {
c := MakeRootConjunct(nil, n.upperBound)
if b := ctx.Validate(c, v); b != nil {
// TODO(errors): make Validate return boolean and generate
// optimized conflict message. Also track and inject IDs
// to determine origin location.s
if e, _ := b.Err.(*ValueError); e != nil {
e.AddPosition(n.upperBound)
e.AddPosition(v)
}
n.addBottom(b)
}
}
} else if state == finalized {
n.node.BaseValue = n.getValidators(finalized)
}
}
// incompleteErrors reports all errors from uncompleted conjuncts.
// If final is true, errors are permanent and reported to parents.
func (n *nodeContext) incompleteErrors(final bool) *Bottom {
unreachableForDev(n.ctx)
// collect incomplete errors.
var err *Bottom // n.incomplete
for _, d := range n.dynamicFields {
err = CombineErrors(nil, err, d.err)
}
for _, c := range n.comprehensions {
if c.err == nil {
continue
}
err = CombineErrors(nil, err, c.err)
// TODO: use this code once possible.
//
// Add comprehension to ensure incomplete error is inserted. This
// ensures that the error is reported in the Vertex where the
// comprehension was defined, and not just in the node below. This, in
// turn, is necessary to support certain logic, like export, that
// expects to be able to detect an "incomplete" error at the first level
// where it is necessary.
// if c.node.status != Finalized {
// n := c.node.getNodeContext(n.ctx)
// n.comprehensions = append(n.comprehensions, c)
// } else {
// n.node.AddErr(n.ctx, err)
// }
// n := d.node.getNodeContext(ctx)
// n.addBottom(err)
if final && c.vertex != nil && c.vertex.status != finalized {
c.vertex.state.assertInitialized()
c.vertex.state.addBottom(err)
c.vertex = nil
}
}
for _, c := range n.selfComprehensions {
if c.err == nil {
continue
}
err = CombineErrors(nil, err, c.err)
// TODO: use this code once possible.
//
// Add comprehension to ensure incomplete error is inserted. This
// ensures that the error is reported in the Vertex where the
// comprehension was defined, and not just in the node below. This, in
// turn, is necessary to support certain logic, like export, that
// expects to be able to detect an "incomplete" error at the first level
// where it is necessary.
// if c.node.status != Finalized {
// n := c.node.getNodeContext(n.ctx)
// n.comprehensions = append(n.comprehensions, c)
// } else {
// n.node.AddErr(n.ctx, err)
// }
// n := d.node.getNodeContext(ctx)
// n.addBottom(err)
if c.vertex != nil && c.vertex.status != finalized {
c.vertex.state.addBottom(err)
c.vertex = nil
}
}
for _, x := range n.exprs {
err = CombineErrors(nil, err, x.err)
}
if err == nil {
// safeguard.
err = incompleteSentinel
}
if err.Code < IncompleteError {
n.node.ArcType = ArcMember
}
return err
}
// TODO(perf): ideally we should always perform a closedness check if
// state is Finalized. This is currently not possible when computing a
// partial disjunction as the closedness information is not yet
// complete, possibly leading to a disjunct to be rejected prematurely.
// It is probably possible to fix this if we could add StructInfo
// structures demarked per conjunct.
//
// In practice this should not be a problem: when disjuncts originate
// from the same disjunct, they will have the same StructInfos, and thus
// Equal is able to equate them even in the presence of optional field.
// In general, combining any limited set of disjuncts will soon reach
// a fixed point where duplicate elements can be eliminated this way.
//
// Note that not checking closedness is irrelevant for disjunctions of
// scalars. This means it also doesn't hurt performance where structs
// have a discriminator field (e.g. Kubernetes). We should take care,
// though, that any potential performance issues are eliminated for
// Protobuf-like oneOf fields.
func (n *nodeContext) checkClosed(state vertexStatus) bool {
unreachableForDev(n.ctx)
ignore := state != finalized || n.skipNonMonotonicChecks()
v := n.node
if !v.Label.IsInt() && v.Parent != nil && !ignore && v.ArcType <= ArcRequired {
ctx := n.ctx
// Visit arcs recursively to validate and compute error.
if _, err := verifyArc2(ctx, v.Label, v, v.ClosedRecursive); err != nil {
// Record error in child node to allow recording multiple
// conflicts at the appropriate place, to allow valid fields to
// be represented normally and, most importantly, to avoid
// recursive processing of a disallowed field.
v.SetValue(ctx, err)
return false
}
}
return true
}
func (n *nodeContext) completeArcs(state vertexStatus) {
unreachableForDev(n.ctx)
if n.node.hasAllConjuncts || n.node.Parent == nil {
n.node.setParentDone()
}
// At this point, if this arc is of type arcVoid, it means that the value
// may still be modified by child arcs. So in this case we must now process
// all arcs to be sure we get the correct result.
// For other cases we terminate early as this results in considerably
// better error messages.
if state <= conjuncts &&
// Is allowed to go one step back. See Vertex.UpdateStatus.
n.node.status <= state+1 &&
(!n.node.hasPendingArc || n.node.ArcType == ArcMember) {
n.node.updateStatus(conjuncts)
return
}
n.node.updateStatus(evaluatingArcs)
ctx := n.ctx
if !assertStructuralCycle(n) {
k := 0
// Visit arcs recursively to validate and compute error.
for _, a := range n.node.Arcs {
// Call UpdateStatus here to be absolutely sure the status is set
// correctly and that we are not regressing.
n.node.updateStatus(evaluatingArcs)
wasVoid := a.ArcType == ArcPending
ctx.unify(a, oldOnly(finalized))
if a.ArcType == ArcPending {
continue
}
// Errors are allowed in let fields. Handle errors and failure to
// complete accordingly.
if !a.Label.IsLet() && a.ArcType <= ArcRequired {
// Don't set the state to Finalized if the child arcs are not done.
if state == finalized && a.status < finalized {
state = conjuncts
}
if err := a.Bottom(); err != nil {
n.AddChildError(err)
}
}
n.node.Arcs[k] = a
k++
switch {
case a.ArcType > ArcRequired, !a.Label.IsString():
case n.kind&StructKind == 0:
if !n.node.IsErr() {
n.reportFieldMismatch(pos(a.Value()), nil, a.Label, n.node.Value())
}
case !wasVoid:
case n.kind == TopKind:
// Theoretically it may be possible that a "void" arc references
// this top value where it really should have been a struct. One
// way to solve this is to have two passes over the arcs, where
// the first pass additionally analyzes whether comprehensions
// will yield values and "un-voids" an arc ahead of the rest.
//
// At this moment, though, I fail to see a possibility to create
// faulty CUE using this mechanism, though. At most error
// messages are a bit unintuitive. This may change once we have
// functionality to reflect on types.
if !n.node.IsErr() {
n.node.BaseValue = &StructMarker{}
n.kind = StructKind
}
}
}
n.node.Arcs = n.node.Arcs[:k]
for _, c := range n.postChecks {
f := ctx.PushState(c.env, c.expr.Source())
// TODO(errors): make Validate return bottom and generate
// optimized conflict message. Also track and inject IDs
// to determine origin location.s
v := ctx.evalState(c.expr, oldOnly(finalized))
v, _ = ctx.getDefault(v)
v = Unwrap(v)
switch _, isError := v.(*Bottom); {
case isError == c.expectError:
default:
n.node.AddErr(ctx, &Bottom{
Src: c.expr.Source(),
Code: CycleError,
Node: n.node,
Err: ctx.NewPosf(pos(c.expr),
"circular dependency in evaluation of conditionals: %v changed after evaluation",
ctx.Str(c.expr)),
})
}
ctx.PopState(f)
}
}
if err := n.getErr(); err != nil {
n.errs = nil
if b, _ := n.node.BaseValue.(*Bottom); b != nil {
err = CombineErrors(nil, b, err)
}
n.node.BaseValue = err
}
b, hasErr := n.node.BaseValue.(*Bottom)
if !hasErr && b != cycle {
n.checkClosed(state)
}
// Strip struct literals that were not initialized and are not part
// of the output.
//
// TODO(perf): we could keep track if any such structs exist and only
// do this removal if there is a change of shrinking the list.
k := 0
for _, s := range n.node.Structs {
if s.initialized {
n.node.Structs[k] = s
k++
}
}
n.node.Structs = n.node.Structs[:k]
n.node.updateStatus(finalized)
}
// TODO: this is now a sentinel. Use a user-facing error that traces where
// the cycle originates.
var cycle = &Bottom{
Err: errors.Newf(token.NoPos, "cycle error"),
Code: CycleError,
}
func isCyclePlaceholder(v BaseValue) bool {
// TODO: do not mark cycle in BaseValue.
if a, _ := v.(*Vertex); a != nil {
v = a.DerefValue().BaseValue
}
return v == cycle
}
func (n *nodeContext) createDisjunct() *Disjunction {
a := make([]Value, len(n.disjuncts))
p := 0
hasDefaults := false
for i, x := range n.disjuncts {
v := new(Vertex)
*v = x.result
v.state = nil
switch x.defaultMode {
case isDefault:
a[i] = a[p]
a[p] = v
p++
hasDefaults = true
case notDefault:
hasDefaults = true
fallthrough
case maybeDefault:
a[i] = v
}
}
// TODO: disambiguate based on concrete values.
// TODO: consider not storing defaults.
// if p > 0 {
// a = a[:p]
// }
return &Disjunction{
Values: a,
NumDefaults: p,
HasDefaults: hasDefaults,
}
}
type arcKey struct {
arc *Vertex
id CloseInfo
}
// A nodeContext is used to collate all conjuncts of a value to facilitate
// unification. Conceptually order of unification does not matter. However,
// order has relevance when performing checks of non-monotic properties. Such
// checks should only be performed once the full value is known.
type nodeContext struct {
nextFree *nodeContext
refCount int
// Keep node out of the nodeContextState to make them more accessible
// for source-level debuggers.
node *Vertex
// parent keeps track of the parent Vertex in which a Vertex is being
// evaluated. This is to keep track of the full path in error messages.
parent *Vertex
// underlying is the original Vertex that this node overlays. It should be
// set for all Vertex values that were cloned.
underlying *Vertex
// overlays is set if this node is the root of a disjunct created in
// doDisjunct. It points to the direct parent nodeContext.
overlays *nodeContext
nodeContextState
scheduler
// Below are slices that need to be managed when cloning and reclaiming
// nodeContexts for reuse. We want to ensure that, instead of setting
// slices to nil, we truncate the existing buffers so that they do not
// need to be reallocated upon reuse of the nodeContext.
arcMap []arcKey // not copied for cloning
// notify is used to communicate errors in cyclic dependencies.
// TODO: also use this to communicate increasingly more concrete values.
notify []receiver
// sharedIDs contains all the CloseInfos that are involved in a shared node.
// There can be more than one if the same Vertex is shared multiple times.
// It is important to keep track of each instance as we need to insert each
// of them separately in case a Vertex is "unshared" to ensure that
// closedness information is correctly computed in such cases.
sharedIDs []CloseInfo
// Conjuncts holds a reference to the Vertex Arcs that still need
// processing. It does NOT need to be copied.
conjuncts []conjunct
cyclicConjuncts []cyclicConjunct
dynamicFields []envDynamic
comprehensions []envYield
selfComprehensions []envYield // comprehensions iterating over own struct.
// Expression conjuncts
lists []envList
vLists []*Vertex
exprs []envExpr
// Checks is a list of conjuncts, as we need to preserve the context in
// which it was evaluated. The conjunct is always a validator (and thus
// a Value). We need to keep track of the CloseInfo, however, to be able
// to catch cycles when evaluating BuiltinValidators.
// TODO: introduce ValueConjunct to get better compile time type checking.
checks []Conjunct
postChecks []envCheck // Check non-monotonic constraints, among other things.
// Disjunction handling
disjunctions []envDisjunct
// disjunctCCs holds the close context that represent "holes" in which
// pending disjuncts are to be inserted for the clone represented by this
// nodeContext. Holes that are not yet filled will always need to be cloned
// when a disjunction branches in doDisjunct.
//
// Holes may accumulate as nested disjunctions get added and filled holes
// may be removed. So the list of disjunctCCs may differ from the number
// of disjunctions.
disjunctCCs []disjunctHole
// usedDefault indicates the for each of possibly multiple parent
// disjunctions whether it is unified with a default disjunct or not.
// This is then later used to determine whether a disjunction should
// be treated as a marked disjunction.
usedDefault []defaultInfo
// disjuncts holds disjuncts that evaluated to a non-bottom value.
// TODO: come up with a better name.
disjuncts []*nodeContext
buffer []*nodeContext
disjunctErrs []*Bottom
disjunct Conjunct
// snapshot holds the last value of the vertex before calling postDisjunct.
snapshot Vertex
// Result holds the last evaluated value of the vertex after calling
// postDisjunct.
result Vertex
}
type conjunct struct {
C Conjunct
// done marks that this conjunct has been inserted. This prevents a
// conjunct from being processed more than once, for instance, when
// insertConjuncts is called more than once for the same node.
done bool
index int // index of the original conjunct in Vertex.Conjuncts
}
type nodeContextState struct {
// isInitialized indicates whether conjuncts have been inserted in the node.
// Use node.isInitialized() to more generally check whether conjuncts have
// been processed.
isInitialized bool
// toComplete marks whether completeNodeTasks needs to be called on this
// node after a corresponding task has been completed.
toComplete bool
// isCompleting > 0 indicates whether a call to completeNodeTasks is in
// progress.
isCompleting int
// runMode keeps track of what runMode a disjunct should run as. This is
// relevant for nested disjunctions, like the 2|3 in (1 | (2|3)) & (1 | 2),
// where the nested disjunction should _not_ be considered as final, as
// there is still a disjunction at a higher level to be processed.
runMode runMode
// evalDept is a number that is assigned when evaluating arcs and is set to
// detect structural cycles. This value may be temporarily altered when a
// node descends into evaluating a value that may be an error (pattern
// constraints, optional fields, etc.). A non-zero value always indicates
// that there are cyclic references, though.
evalDepth int
// State info
hasTop bool
hasAnyCyclicConjunct bool // has conjunct with structural cycle
hasAncestorCycle bool // has conjunct with structural cycle to an ancestor
hasNonCycle bool // has material conjuncts without structural cycle
hasNonCyclic bool // has non-cyclic conjuncts at start of field processing
isShared bool // set if we are currently structure sharing
noSharing bool // set if structure sharing is not allowed
shared Conjunct // the original conjunct that led to sharing
shareCycleType CyclicType // keeps track of the cycle type of shared nodes
origBaseValue BaseValue // the BaseValue that structure sharing replaces
shareDecremented bool // counters of sharedIDs have been decremented
depth int32
defaultMode defaultMode
// Value info
kind Kind
kindExpr Expr // expr that adjust last value (for error reporting)
kindID CloseInfo // for error tracing
// Current value (may be under construction)
scalar Value // TODO: use Value in node.
scalarID CloseInfo
aStruct Expr
aStructID CloseInfo
// List fields
listIsClosed bool
maxListLen int
maxNode Expr
lowerBound *BoundValue // > or >=
upperBound *BoundValue // < or <=
errs *Bottom
// Slice positions
// conjunctsPos is an index into conjuncts indicating the next conjunct
// to process. This is used to avoids processing a conjunct twice in some
// cases where there is an evaluation cycle.
conjunctsPos int
// conjunctsPartialPos is like conjunctsPos, but for the 'partial' phase
// of processing where conjuncts are only processed as concrete scalars.
conjunctsPartialPos int
}
// A receiver receives notifications.
// cc is used for V3 and is nil in V2.
// v is equal to cc.src._cc in V3.
type receiver struct {
v *Vertex
cc *closeContext
}
// Logf substitutes args in format. Arguments of type Feature, Value, and Expr
// are printed in human-friendly formats. The printed string is prefixed and
// indented with the path associated with the current nodeContext.
func (n *nodeContext) Logf(format string, args ...interface{}) {
n.ctx.Logf(n.node, format, args...)
}
type defaultInfo struct {
// parentMode indicates whether this values was used as a default value,
// based on the parent mode.
parentMode defaultMode
// The result of default evaluation for a nested disjunction.
nestedMode defaultMode
origMode defaultMode
}
func (n *nodeContext) addNotify(v *Vertex, cc *closeContext) {
unreachableForDev(n.ctx)
if v != nil && !n.node.hasAllConjuncts {
n.notify = append(n.notify, receiver{v, cc})
}
}
func (n *nodeContext) clone() *nodeContext {
d := n.ctx.newNodeContext(n.node)
d.refCount++
d.ctx = n.ctx
d.node = n.node
d.nodeContextState = n.nodeContextState
d.arcMap = append(d.arcMap, n.arcMap...)
d.notify = append(d.notify, n.notify...)
d.sharedIDs = append(d.sharedIDs, n.sharedIDs...)
n.scheduler.cloneInto(&d.scheduler)
d.conjuncts = append(d.conjuncts, n.conjuncts...)
d.cyclicConjuncts = append(d.cyclicConjuncts, n.cyclicConjuncts...)
d.dynamicFields = append(d.dynamicFields, n.dynamicFields...)
d.comprehensions = append(d.comprehensions, n.comprehensions...)
d.selfComprehensions = append(d.selfComprehensions, n.selfComprehensions...)
d.lists = append(d.lists, n.lists...)
d.vLists = append(d.vLists, n.vLists...)
d.exprs = append(d.exprs, n.exprs...)
d.checks = append(d.checks, n.checks...)
d.postChecks = append(d.postChecks, n.postChecks...)
d.usedDefault = append(d.usedDefault, n.usedDefault...)
// Do not clone other disjunction-related slices, like disjuncts and buffer:
// disjunction slices are managed by disjunction processing directly.
return d
}
func (c *OpContext) newNodeContext(node *Vertex) *nodeContext {
if n := c.freeListNode; n != nil {
c.stats.Reused++
c.freeListNode = n.nextFree
*n = nodeContext{
scheduler: scheduler{ctx: c},
node: node,
nodeContextState: nodeContextState{
kind: TopKind,
},
arcMap: n.arcMap[:0],
conjuncts: n.conjuncts[:0],
cyclicConjuncts: n.cyclicConjuncts[:0],
notify: n.notify[:0],
sharedIDs: n.sharedIDs[:0],
checks: n.checks[:0],
postChecks: n.postChecks[:0],
dynamicFields: n.dynamicFields[:0],
comprehensions: n.comprehensions[:0],
selfComprehensions: n.selfComprehensions[:0],
lists: n.lists[:0],
vLists: n.vLists[:0],
exprs: n.exprs[:0],
disjunctions: n.disjunctions[:0],
disjunctCCs: n.disjunctCCs[:0],
usedDefault: n.usedDefault[:0],
disjunctErrs: n.disjunctErrs[:0],
disjuncts: n.disjuncts[:0],
buffer: n.buffer[:0],
}
n.scheduler.clear()
n.scheduler.node = n
n.underlying = node
return n
}
c.stats.Allocs++
n := &nodeContext{
scheduler: scheduler{
ctx: c,
},
node: node,
nodeContextState: nodeContextState{kind: TopKind},
}
n.scheduler.node = n
n.underlying = node
return n
}
func (v *Vertex) getNodeContext(c *OpContext, ref int) *nodeContext {
unreachableForDev(c)
if v.state == nil {
if v.status == finalized {
return nil
}
v.state = c.newNodeContext(v)
} else if v.state.node != v {
panic("getNodeContext: nodeContext out of sync")
}
v.state.refCount += ref
return v.state
}
func (v *Vertex) freeNode(n *nodeContext) {
if n == nil {
return
}
if n.node != v {
panic("freeNode: unpaired free")
}
if v.state != nil && v.state != n {
panic("freeNode: nodeContext out of sync")
}
if n.refCount--; n.refCount == 0 {
if v.status == finalized {
v.freeNodeState()
} else {
n.ctx.stats.Retained++
}
}
}
func (v *Vertex) freeNodeState() {
if v.state == nil {
return
}
state := v.state
v.state = nil
state.ctx.freeNodeContext(state)
}
func (n *nodeContext) free() {
if n.refCount--; n.refCount == 0 {
n.ctx.freeNodeContext(n)
}
}
func (c *OpContext) freeNodeContext(n *nodeContext) {
c.stats.Freed++
n.nextFree = c.freeListNode
c.freeListNode = n
n.node = nil
n.refCount = 0
n.scheduler.clear()
}
// TODO(perf): return a dedicated ConflictError that can track original
// positions on demand.
func (n *nodeContext) reportConflict(
v1, v2 Node,
k1, k2 Kind,
ids ...CloseInfo) {
ctx := n.ctx
var err *ValueError
if k1 == k2 {
err = ctx.NewPosf(token.NoPos, "conflicting values %s and %s", v1, v2)
} else {
err = ctx.NewPosf(token.NoPos,
"conflicting values %s and %s (mismatched types %s and %s)",
v1, v2, k1, k2)
}
err.AddPosition(v1)
err.AddPosition(v2)
for _, id := range ids {
err.AddClosedPositions(id)
}
n.addErr(err)
}
// reportFieldMismatch reports the mixture of regular fields with non-struct
// values. Either s or f needs to be given.
func (n *nodeContext) reportFieldMismatch(
p token.Pos,
s *StructLit,
f Feature,
scalar Expr,
id ...CloseInfo) {
ctx := n.ctx
if f == InvalidLabel {
for _, a := range s.Decls {
if x, ok := a.(*Field); ok && x.Label.IsRegular() {
f = x.Label
p = pos(x)
break
}
}
if f == InvalidLabel {
n.reportConflict(scalar, s, n.kind, StructKind, id...)
return
}
}
err := ctx.NewPosf(p, "cannot combine regular field %q with %v", f, scalar)
if s != nil {
err.AddPosition(s)
}
for _, ci := range id {
err.AddClosedPositions(ci)
}
n.addErr(err)
}
func (n *nodeContext) updateNodeType(k Kind, v Expr, id CloseInfo) bool {
ctx := n.ctx
kind := n.kind & k
switch {
case n.kind == BottomKind,
k == BottomKind:
return false
case kind != BottomKind:
// TODO: we could consider changing the reporting for structs, but this
// makes only sense in case they are for embeddings. Otherwise the type
// of a struct is more relevant for the failure.
// case k == StructKind:
// s, _ := v.(*StructLit)
// n.reportFieldMismatch(token.NoPos, s, 0, n.kindExpr, id, n.kindID)
case n.kindExpr != nil:
n.reportConflict(n.kindExpr, v, n.kind, k, n.kindID, id)
default:
n.addErr(ctx.Newf(
"conflicting value %s (mismatched types %s and %s)",
v, n.kind, k))
}
if n.kind != kind || n.kindExpr == nil {
n.kindExpr = v
}
n.kind = kind
return kind != BottomKind
}
func (n *nodeContext) done() bool {
// TODO(v0.7): verify that done() is checking for the right conditions in
// the new evaluator implementation.
return len(n.dynamicFields) == 0 &&
len(n.comprehensions) == 0 &&
len(n.exprs) == 0
}
// finalDone is like done, but allows for cycle errors, which can be ignored
// as they essentially indicate a = a & _.
func (n *nodeContext) finalDone() bool {
// TODO(v0.7): update for new evaluator?
for _, x := range n.exprs {
if x.err.Code != CycleError {
return false
}
}
return len(n.dynamicFields) == 0 &&
len(n.comprehensions) == 0 &&
len(n.selfComprehensions) == 0
}
// hasErr is used to determine if an evaluation path, for instance a single
// path after expanding all disjunctions, has an error.
func (n *nodeContext) hasErr() bool {
n.assertInitialized()
if n.node.ChildErrors != nil {
return true
}
if n.node.Status() > evaluating && n.node.IsErr() {
return true
}
return n.ctx.HasErr() || n.errs != nil
}
func (n *nodeContext) getErr() *Bottom {
n.assertInitialized()
n.errs = CombineErrors(nil, n.errs, n.ctx.Err())
return n.errs
}
// getValidators sets the vertex' Value in case there was no concrete value.
func (n *nodeContext) getValidators(state vertexStatus) BaseValue {
n.assertInitialized()
ctx := n.ctx
a := []Value{}
// if n.node.Value != nil {
// a = append(a, n.node.Value)
// }
kind := TopKind
if n.lowerBound != nil {
a = append(a, n.lowerBound)
kind &= n.lowerBound.Kind()
}
if n.upperBound != nil {
a = append(a, n.upperBound)
kind &= n.upperBound.Kind()
}
for _, c := range n.checks {
// Drop !=x if x is out of bounds with another bound.
if b, _ := c.x.(*BoundValue); b != nil && b.Op == NotEqualOp {
if n.upperBound != nil &&
SimplifyBounds(ctx, n.kind, n.upperBound, b) != nil {
continue
}
if n.lowerBound != nil &&
SimplifyBounds(ctx, n.kind, n.lowerBound, b) != nil {
continue
}
}
v := c.x.(Value)
a = append(a, v)
kind &= v.Kind()
}
if kind&^n.kind != 0 {
a = append(a, &BasicType{
Src: n.kindExpr.Source(), // TODO:Is this always a BasicType?
K: n.kind,
})
}
var v BaseValue
switch len(a) {
case 0:
// Src is the combined input.
if state >= conjuncts || n.kind&^CompositeKind == 0 {
v = &BasicType{K: n.kind}
}
case 1:
v = a[0]
default:
v = &Conjunction{Values: a}
}
return v
}
// TODO: this function can probably go as this is now handled in the nodeContext.
func (n *nodeContext) maybeSetCache() {
// Set BaseValue to scalar, but only if it was not set before. Most notably,
// errors should not be discarded.
_, isErr := n.node.BaseValue.(*Bottom)
if n.scalar != nil && (!isErr || isCyclePlaceholder(n.node.BaseValue)) {
n.node.BaseValue = n.scalar
}
// NOTE: this is now handled by associating the nodeContext
// if n.errs != nil {
// n.node.SetValue(n.ctx, Partial, n.errs)
// }
}
type envExpr struct {
c Conjunct
err *Bottom
}
type envDynamic struct {
env *Environment
field *DynamicField
id CloseInfo
err *Bottom
}
type envList struct {
env *Environment
list *ListLit
n int64 // recorded length after evaluator
elipsis *Ellipsis
id CloseInfo
ignore bool // has a self-referencing comprehension and is postponed
self bool // was added as a postponed self-referencing comprehension
}
type envCheck struct {
env *Environment
expr Expr
expectError bool
}
func (n *nodeContext) addBottom(b *Bottom) {
n.assertInitialized()
n.errs = CombineErrors(nil, n.errs, b)
// TODO(errors): consider doing this
// n.kindExpr = n.errs
// n.kind = 0
}
func (n *nodeContext) addErr(err errors.Error) {
n.assertInitialized()
if err != nil {
n.addBottom(&Bottom{
Err: err,
Node: n.node,
})
}
}
// addExprConjuncts will attempt to evaluate an Expr and insert the value
// into the nodeContext if successful or queue it for later evaluation if it is
// incomplete or is not value.
func (n *nodeContext) addExprConjunct(v Conjunct, state vertexStatus) {
unreachableForDev(n.ctx)
env := v.Env
id := v.CloseInfo
switch x := v.Elem().(type) {
case *Vertex:
if x.IsData() {
n.addValueConjunct(env, x, id)
} else {
n.addVertexConjuncts(v, x, true)
}
case Value:
n.addValueConjunct(env, x, id)
case *BinaryExpr:
if x.Op == AndOp {
n.addExprConjunct(MakeConjunct(env, x.X, id), state)
n.addExprConjunct(MakeConjunct(env, x.Y, id), state)
return
} else {
n.evalExpr(v, state)
}
case *StructLit:
n.addStruct(env, x, id)
case *ListLit:
childEnv := &Environment{
Up: env,
Vertex: n.node,
}
n.lists = append(n.lists, envList{env: childEnv, list: x, id: id})
case *DisjunctionExpr:
n.addDisjunction(env, x, id)
case *Comprehension:
// always a partial comprehension.
n.insertComprehension(env, x, id)
return
default:
// Must be Resolver or Evaluator.
n.evalExpr(v, state)
}
n.ctx.stats.Conjuncts++
}
// evalExpr is only called by addExprConjunct. If an error occurs, it records
// the error in n and returns nil.
func (n *nodeContext) evalExpr(v Conjunct, state vertexStatus) {
unreachableForDev(n.ctx)
// Require an Environment.
ctx := n.ctx
closeID := v.CloseInfo
switch x := v.Expr().(type) {
case Resolver:
// We elevate a field evaluated to the Conjuncts state to Finalized
// later. For now we allow partial evaluation so that we can break
// cycles and postpone incomplete evaluations until more information is
// available down the line.
if state == finalized {
state = conjuncts
}
arc, err := ctx.resolveState(v, x, oldOnly(state))
if err != nil && (!err.IsIncomplete() || err.Permanent) {
n.addBottom(err)
break
}
if arc == nil {
n.exprs = append(n.exprs, envExpr{v, err})
break
}
// We complete the evaluation. Some optimizations will only work when an
// arc is already finalized. So this ensures that such optimizations get
// triggered more often.
//
// NOTE(let finalization): aside from being an optimization, this also
// ensures that let arcs that are not contained as fields of arcs, but
// rather are held in the cash, are finalized. This, in turn, is
// necessary to trigger the notification mechanism, where appropriate.
//
// A node should not Finalize itself as it may erase the state object
// which is still assumed to be present down the line
// (see https://cuelang.org/issues/2171).
if arc.status == conjuncts && arc != n.node && arc.hasAllConjuncts {
arc.Finalize(ctx)
}
ci, skip := n.markCycle(arc, v.Env, x, v.CloseInfo)
if skip {
return
}
v.CloseInfo = ci
n.addVertexConjuncts(v, arc, false)
case Evaluator:
// Interpolation, UnaryExpr, BinaryExpr, CallExpr
// Could be unify?
val := ctx.evaluateRec(v, oldOnly(partial))
if b, ok := val.(*Bottom); ok &&
b.IsIncomplete() {
n.exprs = append(n.exprs, envExpr{v, b})
break
}
if v, ok := val.(*Vertex); ok {
// Handle generated disjunctions (as in the 'or' builtin).
// These come as a Vertex, but should not be added as a value.
b, ok := v.BaseValue.(*Bottom)
if ok && b.IsIncomplete() && len(v.Conjuncts) > 0 {
for _, c := range v.Conjuncts {
c.CloseInfo = closeID
n.addExprConjunct(c, state)
}
break
}
}
// TODO: also to through normal Vertex handling here. At the moment
// addValueConjunct handles StructMarker.NeedsClose, as this is always
// only needed when evaluation an Evaluator, and not a Resolver.
// The two code paths should ideally be merged once this separate
// mechanism is eliminated.
//
// if arc, ok := val.(*Vertex); ok && !arc.IsData() {
// n.addVertexConjuncts(v.Env, closeID, v.Expr(), arc)
// break
// }
// TODO: insert in vertex as well
n.addValueConjunct(v.Env, val, closeID)
default:
panic(fmt.Sprintf("unknown expression of type %T", x))
}
}
func (n *nodeContext) addVertexConjuncts(c Conjunct, arc *Vertex, inline bool) {
unreachableForDev(n.ctx)
closeInfo := c.CloseInfo
// We need to ensure that each arc is only unified once (or at least) a
// bounded time, witch each conjunct. Comprehensions, for instance, may
// distribute a value across many values that get unified back into the
// same value. If such a value is a disjunction, than a disjunction of N
// disjuncts will result in a factor N more unifications for each
// occurrence of such value, resulting in exponential running time. This
// is especially common values that are used as a type.
//
// However, unification is idempotent, so each such conjunct only needs
// to be unified once. This cache checks for this and prevents an
// exponential blowup in such case.
//
// TODO(perf): this cache ensures the conjuncts of an arc at most once
// per ID. However, we really need to add the conjuncts of an arc only
// once total, and then add the close information once per close ID
// (pointer can probably be shared). Aside from being more performant,
// this is probably the best way to guarantee that conjunctions are
// linear in this case.
ckey := closeInfo
ckey.Refs = nil
ckey.Inline = false
key := arcKey{arc, ckey}
for _, k := range n.arcMap {
if key == k {
return
}
}
n.arcMap = append(n.arcMap, key)
status := arc.status
switch status {
case evaluating:
// Reference cycle detected. We have reached a fixed point and
// adding conjuncts at this point will not change the value. Also,
// continuing to pursue this value will result in an infinite loop.
// TODO: add a mechanism so that the computation will only have to
// be done once?
if arc == n.node {
// TODO: we could use node sharing here. This may avoid an
// exponential blowup during evaluation, like is possible with
// YAML.
return
}
case evaluatingArcs:
// There is a structural cycle, but values may be processed nonetheless
// if there is a non-cyclic conjunct. See cycle.go.
}
// Performance: the following if check filters cases that are not strictly
// necessary for correct functioning. Not updating the closeInfo may cause
// some position information to be lost for top-level positions of merges
// resulting form APIs. These tend to be fairly uninteresting.
// At the same time, this optimization may prevent considerable slowdown
// in case an API does many calls to Unify.
x := c.Expr()
if !inline || arc.IsClosedStruct() || arc.IsClosedList() {
isDef, _ := IsDef(x)
closeInfo = closeInfo.SpawnRef(arc, isDef, x)
}
if arc.status == unprocessed && !inline {
// This is a rare condition, but can happen in certain
// evaluation orders. Unfortunately, adding this breaks
// resolution of cyclic mutually referring disjunctions. But it
// is necessary to prevent lookups in unevaluated structs.
// TODO(cycles): this can probably most easily be fixed with a
// having a more recursive implementation.
n.ctx.unify(arc, oldOnly(partial))
}
// Don't add conjuncts if a node is referring to itself.
if n.node == arc {
return
}
if arc.state != nil {
arc.state.addNotify(n.node, nil)
}
for _, c := range arc.Conjuncts {
// Note that we are resetting the tree here. We hereby assume that
// closedness conflicts resulting from unifying the referenced arc were
// already caught there and that we can ignore further errors here.
c.CloseInfo = closeInfo
n.addExprConjunct(c, partial)
}
}
func (n *nodeContext) addValueConjunct(env *Environment, v Value, id CloseInfo) {
n.updateCyclicStatus(id)
ctx := n.ctx
if x, ok := v.(*Vertex); ok {
if m, ok := x.BaseValue.(*StructMarker); ok {
n.aStruct = x
n.aStructID = id
if m.NeedClose {
id.IsClosed = true
}
}
if !x.IsData() {
// TODO: this really shouldn't happen anymore.
if isComplexStruct(ctx, x) {
// This really shouldn't happen, but just in case.
n.addVertexConjuncts(MakeConjunct(env, x, id), x, true)
return
}
for _, c := range x.Conjuncts {
c.CloseInfo = id
n.addExprConjunct(c, partial) // TODO: Pass from eval
}
return
}
// TODO: evaluate value?
switch v := x.BaseValue.(type) {
default:
panic(fmt.Sprintf("invalid type %T", x.BaseValue))
case *ListMarker:
n.vLists = append(n.vLists, x)
return
case *StructMarker:
case Value:
n.addValueConjunct(env, v, id)
}
if len(x.Arcs) == 0 {
return
}
s := &StructLit{}
// Keep ordering of Go struct for topological sort.
n.node.AddStruct(s, env, id)
n.node.Structs = append(n.node.Structs, x.Structs...)
for _, a := range x.Arcs {
if !a.definitelyExists() {
continue
}
// TODO(errors): report error when this is a regular field.
c := MakeConjunct(nil, a, id)
n.insertField(a.Label, a.ArcType, c)
s.MarkField(a.Label)
}
return
}
switch b := v.(type) {
case *Bottom:
if b == NoShareSentinel {
return
}
n.addBottom(b)
return
case *Builtin:
if v := b.BareValidator(); v != nil {
n.addValueConjunct(env, v, id)
return
}
}
if !n.updateNodeType(v.Kind(), v, id) {
return
}
switch x := v.(type) {
case *Disjunction:
n.addDisjunctionValue(env, x, id)
case *Conjunction:
for _, x := range x.Values {
n.addValueConjunct(env, x, id)
}
case *Top:
n.hasTop = true
case *BasicType:
// handled above
case *BoundValue:
switch x.Op {
case LessThanOp, LessEqualOp:
if y := n.upperBound; y != nil {
v := SimplifyBounds(ctx, n.kind, x, y)
if err := valueError(v); err != nil {
err.AddPosition(v)
err.AddPosition(n.upperBound)
err.AddClosedPositions(id)
}
n.upperBound = nil
n.addValueConjunct(env, v, id)
return
}
n.upperBound = x
case GreaterThanOp, GreaterEqualOp:
if y := n.lowerBound; y != nil {
v := SimplifyBounds(ctx, n.kind, x, y)
if err := valueError(v); err != nil {
err.AddPosition(v)
err.AddPosition(n.lowerBound)
err.AddClosedPositions(id)
}
n.lowerBound = nil
n.addValueConjunct(env, v, id)
return
}
n.lowerBound = x
case EqualOp, NotEqualOp, MatchOp, NotMatchOp:
// This check serves as simplifier, but also to remove duplicates.
k := 0
match := false
cx := MakeConjunct(env, x, id)
for _, c := range n.checks {
if y, ok := c.x.(*BoundValue); ok {
switch z := SimplifyBounds(ctx, n.kind, x, y); {
case z == y:
match = true
case z == x:
continue
}
}
n.checks[k] = c
k++
}
n.checks = n.checks[:k]
if !match {
n.checks = append(n.checks, cx)
}
return
}
case Validator:
// This check serves as simplifier, but also to remove duplicates.
cx := MakeConjunct(env, x, id)
for i, y := range n.checks {
if b, ok := SimplifyValidator(ctx, cx, y); ok {
n.checks[i] = b
return
}
}
n.updateNodeType(x.Kind(), x, id)
n.checks = append(n.checks, cx)
// TODO(validatorType): see namesake TODO in conjunct.go.
k := x.Kind()
if k == TopKind {
n.hasTop = true
}
n.updateNodeType(k, x, id)
case *Vertex:
// handled above.
case Value: // *NullLit, *BoolLit, *NumLit, *StringLit, *BytesLit, *Builtin
if y := n.scalar; y != nil {
if b, ok := BinOp(ctx, EqualOp, x, y).(*Bool); !ok || !b.B {
n.reportConflict(x, y, x.Kind(), y.Kind(), n.scalarID, id)
}
// TODO: do we need to explicitly add again?
// n.scalar = nil
// n.addValueConjunct(c, BinOp(c, EqualOp, x, y))
break
}
n.scalar = x
n.scalarID = id
if n.node.status >= conjuncts {
n.node.BaseValue = x
}
default:
panic(fmt.Sprintf("unknown value type %T", x))
}
if n.lowerBound != nil && n.upperBound != nil {
if u := SimplifyBounds(ctx, n.kind, n.lowerBound, n.upperBound); u != nil {
if err := valueError(u); err != nil {
err.AddPosition(n.lowerBound)
err.AddPosition(n.upperBound)
err.AddClosedPositions(id)
}
n.lowerBound = nil
n.upperBound = nil
n.addValueConjunct(env, u, id)
}
}
}
func valueError(v Value) *ValueError {
if v == nil {
return nil
}
b, _ := v.(*Bottom)
if b == nil {
return nil
}
err, _ := b.Err.(*ValueError)
if err == nil {
return nil
}
return err
}
// addStruct collates the declarations of a struct.
//
// addStruct fulfills two additional pivotal functions:
// 1. Implement vertex unification (this happens through De Bruijn indices
// combined with proper set up of Environments).
// 2. Implied closedness for definitions.
func (n *nodeContext) addStruct(
env *Environment,
s *StructLit,
closeInfo CloseInfo) {
n.updateCyclicStatus(closeInfo)
// NOTE: This is a crucial point in the code:
// Unification dereferencing happens here. The child nodes are set to
// an Environment linked to the current node. Together with the De Bruijn
// indices, this determines to which Vertex a reference resolves.
childEnv := &Environment{
Up: env,
Vertex: n.node,
}
s.Init(n.ctx)
if s.HasEmbed && !s.IsFile() {
closeInfo = closeInfo.SpawnGroup(nil)
}
parent := n.node.AddStruct(s, childEnv, closeInfo)
closeInfo.IsClosed = false
parent.Disable = true // disable until processing is done.
for _, d := range s.Decls {
switch x := d.(type) {
case *Field:
if x.Label.IsString() && x.ArcType == ArcMember {
n.aStruct = s
n.aStructID = closeInfo
}
n.insertField(x.Label, x.ArcType, MakeConjunct(childEnv, x, closeInfo))
case *LetField:
arc := n.insertField(x.Label, ArcMember, MakeConjunct(childEnv, x, closeInfo))
if x.IsMulti {
arc.MultiLet = x.IsMulti
}
case *DynamicField:
n.aStruct = s
n.aStructID = closeInfo
n.dynamicFields = append(n.dynamicFields, envDynamic{childEnv, x, closeInfo, nil})
case *Comprehension:
n.insertComprehension(childEnv, x, closeInfo)
case Expr:
// add embedding to optional
// TODO(perf): only do this if addExprConjunct below will result in
// a fieldSet. Otherwise the entry will just be removed next.
id := closeInfo.SpawnEmbed(x)
id.decl = x
c := MakeConjunct(childEnv, x, id)
n.addExprConjunct(c, partial)
case *BulkOptionalField, *Ellipsis:
// Nothing to do here. Note that the presence of these fields do not
// excluded embedded scalars: only when they match actual fields
// does it exclude those.
default:
panic("unreachable")
}
}
if !s.HasEmbed {
n.aStruct = s
n.aStructID = closeInfo
}
parent.Disable = false
}
// TODO(perf): if an arc is the only arc with that label added to a Vertex, and
// if there are no conjuncts of optional fields to be added, then the arc could
// be added as is until any of these conditions change. This would allow
// structure sharing in many cases. One should be careful, however, to
// recursively track arcs of previously unified evaluated vertices ot make this
// optimization meaningful.
//
// An alternative approach to avoid evaluating optional arcs (if we take that
// route) is to not recursively evaluate those arcs, even for Finalize. This is
// possible as it is not necessary to evaluate optional arcs to evaluate
// disjunctions.
func (n *nodeContext) insertField(f Feature, mode ArcType, x Conjunct) *Vertex {
ctx := n.ctx
if ctx.isDevVersion() {
return n.insertArc(f, mode, x, x.CloseInfo, true)
}
arc, isNew := n.node.GetArc(ctx, f, mode)
if f.IsLet() && !isNew {
arc.MultiLet = true
return arc
}
if arc.hasConjunct(x) {
return arc
}
switch {
case arc.state != nil:
arc.state.addConjunctDynamic(x)
case arc.IsUnprocessed() || arc.status != finalized:
arc.addConjunctUnchecked(x)
default:
n.addBottom(&Bottom{
Code: IncompleteError,
Node: n.node,
Err: ctx.NewPosf(pos(x.Field()),
"cannot add field %s: was already used",
f.SelectorString(ctx)),
})
}
return arc
}
func (n *nodeContext) insertFieldUnchecked(f Feature, mode ArcType, x Conjunct) *Vertex {
ctx := n.ctx
if ctx.isDevVersion() {
return n.insertArc(f, mode, x, x.CloseInfo, false)
}
arc, isNew := n.node.GetArc(ctx, f, mode)
if f.IsLet() && !isNew {
arc.MultiLet = true
return arc
}
arc.addConjunctUnchecked(x)
return arc
}
// expandOne adds dynamic fields to a node until a fixed point is reached.
// On each iteration, dynamic fields that cannot resolve due to incomplete
// values are skipped. They will be retried on the next iteration until no
// progress can be made. Note that a dynamic field may add more dynamic fields.
//
// forClauses are processed after all other clauses. A struct may be referenced
// before it is complete, meaning that fields added by other forms of injection
// may influence the result of a for clause _after_ it has already been
// processed. We could instead detect such insertion and feed it to the
// ForClause to generate another entry or have the for clause be recomputed.
// This seems to be too complicated and lead to iffy edge cases.
// TODO(errors): detect when a field is added to a struct that is already used
// in a for clause.
func (n *nodeContext) expandOne(state vertexStatus) (done bool) {
unreachableForDev(n.ctx)
// Don't expand incomplete expressions if we detected a cycle.
if n.done() || (n.hasAnyCyclicConjunct && !n.hasNonCycle) {
return false
}
var progress bool
if progress = n.injectDynamic(); progress {
return true
}
if progress = n.injectComprehensions(state); progress {
return true
}
// Do expressions after comprehensions, as comprehensions can never
// refer to embedded scalars, whereas expressions may refer to generated
// fields if we were to allow attributes to be defined alongside
// scalars.
exprs := n.exprs
n.exprs = n.exprs[:0]
for _, x := range exprs {
n.addExprConjunct(x.c, state)
// collect and or
}
if len(n.exprs) < len(exprs) {
return true
}
// No progress, report error later if needed: unification with
// disjuncts may resolve this later on.
return false
}
// injectDynamic evaluates and inserts dynamic declarations.
func (n *nodeContext) injectDynamic() (progress bool) {
unreachableForDev(n.ctx)
ctx := n.ctx
k := 0
a := n.dynamicFields
for _, d := range n.dynamicFields {
var f Feature
x := d.field.Key
// Push state to capture and remove errors.
s := ctx.PushState(d.env, x.Source())
v := ctx.evalState(x, oldOnly(finalized))
b := ctx.PopState(s)
if b != nil && b.IsIncomplete() {
d.err, _ = v.(*Bottom)
a[k] = d
k++
continue
}
if b, _ := v.(*Bottom); b != nil {
n.addValueConjunct(nil, b, d.id)
continue
}
f = ctx.Label(d.field.Key, v)
if f.IsInt() {
n.addErr(ctx.NewPosf(pos(d.field.Key), "integer fields not supported"))
}
n.insertField(f, d.field.ArcType, MakeConjunct(d.env, d.field, d.id))
}
progress = k < len(n.dynamicFields)
n.dynamicFields = a[:k]
return progress
}
// addLists evaluates the queued list conjuncts and inserts its arcs into the
// Vertex.
//
// TODO: association arrays:
// If an association array marker was present in a struct, create a struct node
// instead of a list node. In either case, a node may only have list fields
// or struct fields and not both.
//
// addLists should be run after the fixpoint expansion:
// - it enforces that comprehensions may not refer to the list itself
// - there may be no other fields within the list.
//
// TODO(embeddedScalars): for embedded scalars, there should be another pass
// of evaluation expressions after expanding lists.
func (n *nodeContext) addLists(state combinedFlags) (progress bool) {
if len(n.lists) == 0 && len(n.vLists) == 0 {
return false
}
var oneOfTheLists Expr
var anID CloseInfo
isOpen := true
max := 0
var maxNode Expr
if m, ok := n.node.BaseValue.(*ListMarker); ok {
isOpen = m.IsOpen
max = len(n.node.Arcs)
}
c := n.ctx
for _, l := range n.vLists {
// XXX: set hasNonCycle if appropriate.
oneOfTheLists = l
elems := l.Elems()
isClosed := l.IsClosedList()
switch {
case len(elems) < max:
if isClosed {
n.invalidListLength(len(elems), max, l, maxNode)
continue
}
case len(elems) > max:
if !isOpen {
n.invalidListLength(max, len(elems), maxNode, l)
continue
}
isOpen = !isClosed
max = len(elems)
maxNode = l
case isClosed:
isOpen = false
maxNode = l
}
for _, a := range elems {
if a.Conjuncts == nil {
n.insertField(a.Label, ArcMember, MakeRootConjunct(nil, a))
continue
}
for _, c := range a.Conjuncts {
n.insertField(a.Label, ArcMember, c)
}
}
}
outer:
// updateCyclicStatus may grow the list of values, so we cannot use range.
for i := 0; i < len(n.lists); i++ {
l := n.lists[i]
n.updateCyclicStatus(l.id)
if l.self {
n.node.LockArcs = true
}
index := int64(0)
hasComprehension := false
for j, elem := range l.list.Elems {
switch x := elem.(type) {
case *Comprehension:
err := c.yield(nil, l.env, x, state, func(e *Environment) {
label, err := MakeLabel(x.Source(), index, IntLabel)
n.addErr(err)
index++
c := MakeConjunct(e, x.Value, l.id)
n.insertField(label, ArcMember, c)
})
hasComprehension = true
if err != nil {
if err.ForCycle && !l.self {
// The list has a comprehension that refers to the list
// itself. This means we should postpone evaluating this
// list until all other lists have been evaluated.
n.lists[i].ignore = true
l.self = true
n.lists = append(n.lists, l)
} else {
n.addBottom(err)
}
continue outer
}
case *Ellipsis:
if j != len(l.list.Elems)-1 {
n.addErr(c.Newf("ellipsis must be last element in list"))
}
n.lists[i].elipsis = x
default:
label, err := MakeLabel(x.Source(), index, IntLabel)
n.addErr(err)
index++ // TODO: don't use insertField.
n.insertField(label, ArcMember, MakeConjunct(l.env, x, l.id))
}
// Terminate early in case of runaway comprehension.
if !isOpen && int(index) > max {
n.invalidListLength(max, len(l.list.Elems), maxNode, l.list)
continue outer
}
}
oneOfTheLists = l.list
anID = l.id
switch closed := n.lists[i].elipsis == nil; {
case int(index) < max:
if closed {
n.invalidListLength(int(index), max, l.list, maxNode)
continue
}
case int(index) > max,
closed && isOpen,
(!closed == isOpen) && !hasComprehension:
max = int(index)
maxNode = l.list
isOpen = !closed
}
n.lists[i].n = index
}
// add additionalItem values to list and construct optionals.
elems := n.node.Elems()
for _, l := range n.vLists {
if !l.IsClosedList() {
continue
}
newElems := l.Elems()
if len(newElems) >= len(elems) {
continue // error generated earlier, if applicable.
}
for _, arc := range elems[len(newElems):] {
l.MatchAndInsert(c, arc)
}
}
for _, l := range n.lists {
if l.elipsis == nil || l.ignore {
continue
}
s := l.list.info
if s == nil {
s = &StructLit{Decls: []Decl{l.elipsis}}
s.Init(n.ctx)
l.list.info = s
}
info := n.node.AddStruct(s, l.env, l.id)
for _, arc := range elems[l.n:] {
info.MatchAndInsert(c, arc)
}
}
sources := []ast.Expr{}
// Add conjuncts for additional items.
for _, l := range n.lists {
if l.elipsis == nil || l.ignore {
continue
}
if src, _ := l.elipsis.Source().(ast.Expr); src != nil {
sources = append(sources, src)
}
}
if m, ok := n.node.BaseValue.(*ListMarker); !ok {
n.node.setValue(c, partial, &ListMarker{
Src: ast.NewBinExpr(token.AND, sources...),
IsOpen: isOpen,
})
} else {
if m.Src != nil {
sources = append(sources, m.Src)
}
m.Src = ast.NewBinExpr(token.AND, sources...)
m.IsOpen = m.IsOpen && isOpen
}
n.lists = n.lists[:0]
n.vLists = n.vLists[:0]
n.updateNodeType(ListKind, oneOfTheLists, anID)
return true
}
func (n *nodeContext) invalidListLength(na, nb int, a, b Expr) {
n.addErr(n.ctx.Newf("incompatible list lengths (%d and %d)", na, nb))
}
|