File: fields.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (1083 lines) | stat: -rw-r--r-- 32,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
// Copyright 2023 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package adt

import (
	"cuelang.org/go/cue/token"
)

// This file holds the logic for the insertion of fields and pattern
// constraints, including tracking closedness.
//
//
// DESIGN GOALS
//
// Key to performance is to fail early during evaluation. This is especially
// true for disjunctions. In CUE evaluation, conjuncts may be evaluated in a
// fairly arbitrary order. We want to retain this flexibility while also failing
// on disallowed fields as soon as we have enough data to tell for certain.
//
// Keeping track of which fields are allowed means keeping provenance data on
// whether certain conjuncts originate from embeddings or definitions, as well
// as how they group together with other conjuncts. These data structures should
// allow for a "mark and unwind" approach to allow for backtracking when
// computing disjunctions.
//
// References to the same CUE value may be added as conjuncts through various
// paths. For instance, a reference to a definition may be added directly, or
// through embedding. How they are added affects which set of fields are
// allowed. This can make the removal of duplicate conjuncts hard. A solution
// should make it straightforward to deduplicate conjuncts if they have the same
// impact on field inclusion.
//
// All conjuncts associated with field constraints, including optional fields
// and pattern constraints, should be collated, deduplicated, and evaluated as
// if they were regular fields. This allows comparisons between values to be
// meaningful and helps to filter disjuncts.
//
// The provenance data generated by this algorithm should ideally be easily
// usable in external APIs.
//
//
// DATA STRUCTURES
//
// Conjuncts
//
// To keep track of conjunct provenance, each conjunct has a few flags that
// indicates whether it originates from
//   - an embedding
//   - a definition
//   - a reference (optional and unimplemented)
//
// Conjuncts with the same origin are represented as a single Conjunct in the
// Vertex, where this conjunct is a list of these conjuncts. In other words, the
// conjuncts of a Vertex are really a forest (group of trees) of conjuncts that,
// recursively, reflect the provenance of the conjuncts contained within it.
//
// The current implementation uses a Vertex for listing conjuncts with the same
// origin. This Vertex is marked as "Dynamic", as it does not have a CUE path
// that leads to them.
//
//
// Constraints
//
// Vertex values separately keep track of pattern constraints. These consist of
// a list of patterns with associated conjuncts, and a CUE expression that
// represents the set of allowed fields. This information is mostly for equality
// checking: by the time this data is produced, conjuncts associated with
// patterns are already inserted into the computed subfields.
//
// Note that this representation assumes that patterns are always accrued
// cumulatively: a field that is allowed will accrue the conjuncts of any
// matched pattern, even if it originates from an embedding that itself does not
// allow this field.
//
//
// ALGORITHM
//
// When processing the conjuncts of a Vertex, subfields are tracked per
// "grouping" (the list of conjuncts of the same origin). Each grouping keeps a
// counter of the number of unprocessed conjuncts and subgroups associated with
// it. Field inclusion (closedness) can be computed as soon as all subconjuncts
// and subgroups are processed.
//
// Conjuncts of subfields are inserted in such a way that they reflect the same
// grouping as the parent Vertex, plus any grouping that may be added by the
// subfield itself.
//
// It would be possible, though, to collapse certain (combinations of) groups
// that contain only a single conjunct. This can limit the size of such conjunct
// trees.
//
// As conjuncts are added within their grouping context, it is possible to
// uniquely identify conjuncts only by Vertex and expression pointer,
// disregarding the Environment.
//
//
// EXAMPLE DATA STRUCTURE
//
//    a: #A
//    #A: {
//        #B
//        x: r1
//    }
//    #B: y: r2
//    r1: z: r3
//    r2: 2
//    r3: foo: 2
//
// gets evaluated into:
//
//    V_a: Arcs{
//        x: V_x [ V_def(#A)[ r1 ] ]
//        y: V_y [ V_def(#A)[ V_embed(#B)[ r2 ] ] ]
//    }
//
// When evaluating V_x, its Arcs, in turn become:
//
//    V_x: Arcs{
//        z: V_z [ V_def(#A)[ V_ref(r1)[ r3 ]) ]]
//    }
//
// The V_def(#A) is necessary here to ensure that closedness information can be
// computed, if necessary. The V_ref's, however, are optional, and can be
// omitted if provenance is less important:
//
//    V_x: Arcs{
//        z: V_z [ V_def(#A)[ r3 ]]
//    }
//
// Another possible optimization is to eliminate Vertices if there is only one
// conjunct: the embedding and definition flags in the conjunct can be
// sufficient in that case. The provenance data could potentially be derived
// from the Environment in that case. If an embedding conjunct is itself the
// only conjunct in a list, the embedding bit can be eliminated. So V_y in the
// above example could be reduced to
//
//    V_y [ V_def(#A)[ r2 ] ]
//

// TODO(perf):
// - the data structures could probably be collapsed with Conjunct. and the
//   Vertex inserted into the Conjuncts could be a special ConjunctGroup.

type closeContext struct {
	// Used to recursively insert Vertices.
	parent *closeContext

	// depth is the depth from the top following the parent tree. This may be
	// relative to an anonymous struct for inline computed values.
	depth int

	// overlay is used to temporarily link a closeContext to its "overlay" copy,
	// as it is used in a corresponding disjunction.
	overlay *closeContext
	// generation is used to track the current generation of the closeContext
	// in disjunction overlays. This is mostly for debugging.
	generation int

	// a non-zero value indicates that the closeContext is part of a disjunction
	// and that it is associated with the given Hole Index.
	holeID int

	// dependencies is used to track dependencies that need to be copied in
	// overlays. It is also use for testing.
	dependencies []*ccDep

	// externalDeps lists the closeContexts associated with a root node for
	// which there are outstanding decrements (can only be NOTIFY or ARC). This
	// is used to break counter cycles, if necessary.
	//
	// This is only used for root closedContext and only for debugging.
	// TODO: move to nodeContext.
	externalDeps []ccDepRef

	// child links to a sequence which additional patterns need to be verified
	// against (&&). If there are more than one, these additional nodes are
	// linked with next. Only closed nodes with patterns are added. Arc sets are
	// already merged during processing.
	// A child is always done. This means it cannot be modified.
	child *closeContext

	// next holds a linked list of nodes to process.
	// See comments above and see linkPatterns.
	next *closeContext

	// if conjunctCount is 0, pattern constraints can be merged and the
	// closedness can be checked. To ensure that this is true, there should
	// be an additional increment at the start before any processing is done.
	conjunctCount int

	// disjunctCount counts the number of disjunctions that contribute to
	// conjunctCount. When a node is unfinished, for instance due to an error,
	// we allow disjunctions to not be decremented. This count is then used
	// to suppress errors about missing decrements.
	disjunctCount int

	src *Vertex

	arcType ArcType

	// isDef is true when isDefOrig is true or when isDef is true for any of its
	// child nodes, recursively.
	isDef bool

	// isDefOrig indicates whether the closeContext is created as part of a
	// definition. This value propagates to itself and parents through isDef.
	isDefOrig bool

	// hasTop indicates a node has at least one top conjunct.
	hasTop bool

	// hasNonTop indicates a node has at least one conjunct that is not top.
	hasNonTop bool

	// isClosedOnce is true if this closeContext is the result of calling the
	// close builtin.
	isClosedOnce bool

	// isEmbed indicates whether the closeContext is created as part of an
	// embedding.
	isEmbed bool

	// isClosed is true if a node is a def, it became closed because of a
	// reference or if it is closed by the close builtin.
	//
	// isClosed must only be set to true if all fields and pattern constraints
	// that define the domain of the node have been added.
	isClosed bool

	// isTotal is true if a node contains an ellipsis and is defined for all
	// values.
	isTotal bool

	// done is true if all dependencies have been decremented.
	done bool

	// isDecremented is used to keep track of whether the evaluator decremented
	// a closedContext for the ROOT depKind.
	isDecremented bool

	// needsCloseInSchedule is non-nil if a closeContext that was created
	// as an arc still needs to be decremented. It points to the creating arc
	// for reporting purposes.
	needsCloseInSchedule *closeContext

	// parentConjuncts represent the parent of this embedding or definition.
	// Any closeContext is represented by a ConjunctGroup in parent of the
	// expression tree.
	parentConjuncts conjunctGrouper
	// TODO: Only needed if more than one conjuncts.

	// arcs represents closeContexts for sub fields and notification targets
	// associated with this node that reflect the same point in the expression
	// tree as this closeContext. In both cases the are keyed by Vertex.
	arcs []ccArc

	// notify represents closeContexts which to notify of updates.
	//
	// TODO: Note that this slice is very similar to nodeContext.notify and the
	// use of these can likely be merged. It may be better to let the notify
	// originate from a more specific closeContext, allowing it to stopped
	// sooner and possibly even remove the need for breaking dependency
	// cycles.
	notify []ccNotify

	// parentIndex is the position in the parent's arcs slice that corresponds
	// to this closeContext. This is currently unused. The intention is to use
	// this to allow groups with single elements (which will be the majority)
	// to be represented in place in the parent.
	parentIndex int

	group *ConjunctGroup

	// Patterns contains all patterns of the current closeContext.
	// It is used in the construction of Expr.
	Patterns []Value

	// Expr contains the Expr that is used for checking whether a Feature
	// is allowed in this context. It is only complete after the full
	// context has been completed, but it can be used for initial checking
	// once isClosed is true.
	Expr Value

	// decl is the declaration which contains the conjuct which gave
	// rise to this closeContext.
	decl Decl
}

// Label is a convenience function to return the label of the associated Vertex.
func (c *closeContext) Label() Feature {
	return c.src.Label
}

// See also Vertex.updateArcType in composite.go.
func (c *closeContext) updateArcType(ctx *OpContext, t ArcType) {
	if t == ArcPending {
		return
	}
	for ; c != nil; c = c.parent {
		switch {
		case t >= c.arcType:
			return
		case c.arcType == ArcNotPresent:
			ctx.notAllowedError(c.src)
			return
		default:
			c.arcType = t
		}
	}
}

type ccArc struct {
	// decremented indicates whether [decDependant] has been called for this
	// dependency.
	decremented bool
	// matched indicates the arc is only added to track the destination of a
	// matched pattern and that it is not explicitly defined as a field.
	// This is only used for arcs and not for notify.
	matched bool
	// root is dst.src.cc(). TODO: remove and use dst directly.
	root *closeContext
	// dst is the closeContext for which the counters are incremented and
	// decremented and which is the actual destination of the dependency.
	dst *closeContext
}

type ccNotify struct {
	// decremented indicates whether [decDependant] has been called for this
	// dependency.
	decremented bool
	// dst is the closeContext for which the counters are incremented and
	// decremented and which is the actual destination of the dependency.
	dst *closeContext
}

type conjunctGrouper interface {
	// Assign conjunct adds the conjunct and returns an arc to represent it,
	// along with the position within the group.
	assignConjunct(ctx *OpContext, root *closeContext, c Conjunct, mode ArcType, check, checkClosed bool) (arc *closeContext, pos int, added bool)
}

func (n *nodeContext) getArc(f Feature, mode ArcType) (arc *Vertex, isNew bool) {
	// TODO(disjunct,perf): CopyOnRead
	v := n.node
	for _, a := range v.Arcs {
		if a.Label == f {
			if f.IsLet() {
				a.MultiLet = true
				// TODO: add return here?
			}
			a.updateArcType(mode)
			return a, false
		}
	}

	arc = &Vertex{
		Parent:    v,
		Label:     f,
		ArcType:   mode,
		nonRooted: v.IsDynamic || v.Label.IsLet() || v.nonRooted,
		anonymous: v.anonymous || v.Label.IsLet(),
	}
	if n.scheduler.frozen&fieldSetKnown != 0 {
		b := n.ctx.NewErrf("adding field %v not allowed as field set was already referenced", f)
		n.ctx.AddBottom(b)
		// This may panic for list arithmetic. Safer to leave out for now.
		arc.ArcType = ArcNotPresent
	}
	v.Arcs = append(v.Arcs, arc)
	return arc, true
}

func (v *Vertex) assignConjunct(ctx *OpContext, root *closeContext, c Conjunct, mode ArcType, check, checkClosed bool) (a *closeContext, pos int, added bool) {

	// TODO: consider clearing CloseInfo.cc.
	// c.CloseInfo.cc = nil

	arc := root.src
	arc.updateArcType(mode) // TODO: probably not necessary: consider removing.

	if &arc.Conjuncts != root.group {
		panic("misaligned conjuncts")
	}

	pos = -1
	if check {
		pos = findConjunct(arc.Conjuncts, c)
	}
	if pos == -1 {
		pos = len(arc.Conjuncts)
		c.CloseInfo.cc = root
		arc.addConjunctUnchecked(c)
		added = true
	}

	return root, pos, added
}

func (cc *closeContext) getKeyedCC(ctx *OpContext, key *closeContext, c CycleInfo, mode ArcType, checkClosed bool) *closeContext {
	for i := range cc.arcs {
		a := &cc.arcs[i]
		if a.root == key {
			a.matched = a.matched && !checkClosed
			a.dst.updateArcType(ctx, mode)
			return a.dst
		}
	}

	group := &ConjunctGroup{}

	if cc.parentConjuncts == cc {
		panic("parent is self")
	}

	parent, pos, _ := cc.parentConjuncts.assignConjunct(ctx, key, Conjunct{
		CloseInfo: CloseInfo{
			FromDef:   cc.isDef,
			FromEmbed: cc.isEmbed,
			CycleInfo: c,
		},
		x: group,
	}, mode, false, checkClosed)

	arc := &closeContext{
		// origin:          cc.origin,
		depth:           cc.depth,
		generation:      cc.generation,
		parent:          parent,
		parentConjuncts: parent,
		parentIndex:     pos,

		src:     key.src,
		arcType: mode,
		group:   group,

		isDef:                cc.isDef,
		isDefOrig:            cc.isDefOrig,
		isEmbed:              cc.isEmbed,
		needsCloseInSchedule: cc,
	}

	arc.parent.incDependent(ctx, PARENT, arc)

	// If the parent, w.r.t. the subfield relation was already processed,
	// there is no need to register the notification.
	arc.incDependent(ctx, EVAL, cc) // matched in REF(decrement:nodeDone)

	// A let field never depends on its parent. So it is okay to filter here.
	if !arc.Label().IsLet() {
		// prevent a dependency on self.
		if key.src != cc.src {
			matched := !checkClosed
			cc.addArcDependency(ctx, matched, arc)
		}
	}

	v := key.src
	if checkClosed && v.Parent != nil && v.Parent.state != nil {
		v.Parent.state.checkArc(cc, v)
	}

	return arc
}

func (cc *closeContext) assignConjunct(ctx *OpContext, root *closeContext, c Conjunct, mode ArcType, check, checkClosed bool) (arc *closeContext, pos int, added bool) {
	arc = cc.getKeyedCC(ctx, root, c.CloseInfo.CycleInfo, mode, checkClosed)

	c.CloseInfo.cc = nil

	var group ConjunctGroup
	if arc.group != nil {
		group = *arc.group
	}
	pos = -1
	if check {
		pos = findConjunct(group, c)
	}
	if pos == -1 {
		pos = len(group)
		added = true

		c.CloseInfo.cc = arc

		if c.CloseInfo.cc.src != arc.src {
			panic("Inconsistent src")
		}

		group = append(group, c)
		if arc.group == nil {
			arc.group = &group
		} else {
			*arc.group = group
		}
	}
	return arc, pos, added
}

// TODO: cache depth.
func VertexDepth(v *Vertex) int {
	depth := 0
	for p := v.Parent; p != nil; p = p.Parent {
		depth++
	}
	return depth
}

// spawnCloseContext wraps the closeContext in c with a new one and returns
// this new context along with an updated CloseInfo. The new values reflect
// that the set of fields represented by c are now, for instance, enclosed in
// an embedding or a definition.
//
// This call is used when preparing ADT values for evaluation.
func (c CloseInfo) spawnCloseContext(ctx *OpContext, t closeNodeType) (CloseInfo, *closeContext) {
	cc := c.cc
	if cc == nil {
		panic("nil closeContext")
	}

	depth := VertexDepth(cc.src)

	c.cc = &closeContext{
		generation:      cc.generation,
		parent:          cc,
		depth:           depth,
		src:             cc.src,
		parentConjuncts: cc,
	}

	cc.incDependent(ctx, PARENT, c.cc) // REF(decrement: spawn)

	switch t {
	case closeDef:
		c.cc.isDef = true
		c.cc.isDefOrig = true
	case closeEmbed:
		c.cc.isEmbed = true
	}

	return c, c.cc
}

func (c *closeContext) updateClosedInfo(ctx *OpContext) bool {
	p := c.parent

	if c.isDef && !c.isTotal && (!c.hasTop || c.hasNonTop) {
		c.isClosed = true
		if p != nil {
			p.isDef = true
		}
	}

	if c.isClosedOnce {
		c.isClosed = true
		if p != nil {
			p.isClosedOnce = true
		}
	}

	c.finalizePattern()

	if p == nil {
		v := c.src
		// Root pattern, set allowed patterns.
		if pcs := v.PatternConstraints; pcs != nil {
			if pcs.Allowed != nil {
				// This can happen for lists.
				// TODO: unify the values.
				// panic("unexpected allowed set")
			}
			pcs.Allowed = c.Expr
			return false
		}
		return false
	}

	if c.hasTop {
		p.hasTop = true
	}
	if c.hasNonTop {
		p.hasNonTop = true
	}

	switch {
	case c.isTotal:
		if !p.isClosed {
			p.isTotal = true
		}
	case !c.isEmbed && c.isClosed:
		// Merge the two closeContexts and ensure that the patterns and fields
		// are mutually compatible according to the closedness rules.
		injectClosed(ctx, c, p)
		p.Expr = mergeConjunctions(p.Expr, c.Expr)
	default:
		// Do not check closedness of fields for embeddings.
		// The pattern constraints of the embedding still need to be added
		// to the current context.
		p.linkPatterns(c)
	}

	return true
}

// linkPatterns merges the patterns of child into c, if needed.
func (c *closeContext) linkPatterns(child *closeContext) {
	// We need to always add the closeContext, as this closeContext may, for
	// instance, be an embedding within a definition. In other words, we do
	// not know yet if this information will be relevant for closedness.
	child.next = c.child
	c.child = child
}

// allowedInClosed reports whether a field with label f is allowed in a closed
// struct, even when it is not explicitly defined.
//
// TODO: see https://github.com/cue-lang/cue/issues/543
// for whether to include f.IsDef.
func allowedInClosed(f Feature) bool {
	return f.IsHidden() || f.IsDef() || f.IsLet()
}

// checkArc validates that the node corresponding to cc allows a field with
// label v.Label.
func (n *nodeContext) checkArc(cc *closeContext, v *Vertex) *Vertex {
	n.assertInitialized()

	f := v.Label
	ctx := n.ctx

	if allowedInClosed(f) {
		return v
	}

	if cc.isClosed && !matchPattern(ctx, cc.Expr, f) {
		ctx.notAllowedError(v)
	}
	if n.scheduler.frozen&fieldSetKnown != 0 {
		for _, a := range n.node.Arcs {
			if a.Label == f {
				return v
			}
		}
		var b *Bottom
		// TODO: include cycle data and improve error message.
		if f.IsInt() {
			b = ctx.NewErrf(
				"element at index %v not allowed by earlier comprehension or reference cycle", f)
		} else {
			b = ctx.NewErrf(
				"field %v not allowed by earlier comprehension or reference cycle", f)
		}
		v.SetValue(ctx, b)
	}

	return v
}

// insertConjunct inserts conjunct c into cc.
func (cc *closeContext) insertConjunct(ctx *OpContext, key *closeContext, c Conjunct, id CloseInfo, mode ArcType, check, checkClosed bool) (arc *closeContext, added bool) {
	arc, _, added = cc.assignConjunct(ctx, key, c, mode, check, checkClosed)
	if key.src != arc.src {
		panic("inconsistent src")
	}

	if !added {
		return
	}

	n := key.src.getBareState(ctx)
	if n == nil {
		// already done
		return
	}

	switch id.CycleType {
	case NoCycle, IsOptional:
		n.hasNonCyclic = true
	}

	if key.src.isInProgress() {
		c.CloseInfo.cc = nil
		id.cc = arc
		n.scheduleConjunct(c, id)
	}

	for _, rec := range n.notify {
		// TODO(evalv3): currently we get pending arcs here for some tests.
		// That seems fine. But consider this again when most of evalv3 work
		// is done. See test "pending.cue" in comprehensions/notify2.txtar
		// It seems that only let arcs can be pending, though.

		// TODO: we should probably only notify a conjunct once the root of the
		// conjunct group is completed. This will make it easier to "stitch" the
		// conjunct trees together, as its correctness will be guaranteed.
		c.CloseInfo.cc = rec.cc
		rec.v.state.scheduleConjunct(c, id)
	}

	return
}

func (n *nodeContext) insertArc(f Feature, mode ArcType, c Conjunct, id CloseInfo, check bool) *Vertex {
	v, _ := n.insertArcCC(f, mode, c, id, check)
	return v
}

// insertArc inserts conjunct c into n. If check is true it will not add c if it
// was already added.
// Returns the arc of n.node with label f.
func (n *nodeContext) insertArcCC(f Feature, mode ArcType, c Conjunct, id CloseInfo, check bool) (*Vertex, *closeContext) {
	n.assertInitialized()

	if n == nil {
		panic("nil nodeContext")
	}
	if n.node == nil {
		panic("nil node")
	}
	cc := id.cc
	if cc == nil {
		panic("nil closeContext")
	}

	v, insertedArc := n.getArc(f, mode)

	defer n.ctx.PopArc(n.ctx.PushArc(v))

	// TODO: reporting the cycle error here results in better error paths.
	// However, it causes the reference counting mechanism to be faulty.
	// Reevaluate once the new evaluator is done.
	// if v.ArcType == ArcNotPresent {
	// 	// It was already determined before that this arc may not be present.
	// 	// This case can only manifest itself if we have a cycle.
	// 	n.node.reportFieldCycleError(n.ctx, pos(c.x), f)
	// 	return v, nil
	// }

	if v.cc() == nil {
		v.rootCloseContext(n.ctx)
		// TODO(evalv3): reevaluate need for generation
		v._cc.generation = n.node._cc.generation
	}

	arc, added := cc.insertConjunct(n.ctx, v.cc(), c, id, mode, check, true)
	if !added {
		return v, arc
	}

	if !insertedArc {
		return v, arc
	}

	// Match and insert patterns.
	if pcs := n.node.PatternConstraints; pcs != nil {
		for _, pc := range pcs.Pairs {
			if matchPattern(n.ctx, pc.Pattern, f) {
				for _, c := range pc.Constraint.Conjuncts {
					// TODO: consider using the root cc, but probably does not
					// matter.
					// This is necessary if we defunct tasks, but otherwise not.
					// It breaks the CloseContext tests, though.
					// c.CloseInfo.cc = id.cc
					n.addConstraint(v, mode, c, check)
				}
			}
		}
	}

	return v, arc
}

// addConstraint adds a constraint to arc of n.
//
// In order to resolve LabelReferences, it is not always possible to walk up
// the parent Vertex chain to determan the label, because a label reference
// may point past a point of referral. For instance,
//
//	test: [ID=_]: name: ID
//	test: A: {}
//	B: test.A & {}  // B.name should be "A", not "B".
//
// The arc must be the node arc to which the conjunct is added.
func (n *nodeContext) addConstraint(arc *Vertex, mode ArcType, c Conjunct, check bool) {
	n.assertInitialized()

	// TODO(perf): avoid cloning the Environment, if:
	// - the pattern constraint has no LabelReference
	//   (require compile-time support)
	// - there are no references in the conjunct pointing to this node.
	// - consider adding this value to the Conjunct struct
	f := arc.Label
	bulkEnv := *c.Env
	bulkEnv.DynamicLabel = f
	c.Env = &bulkEnv

	// TODO(constraintNode): this should ideally be
	//    cc := id.cc
	// or
	//    cc := c.CloseInfo.cc.src.cc
	//
	// Where id is the closeContext corresponding to the field, or the root
	// context. But it is a bit hard to figure out how to account for this, as
	// either this information is not available or the root context results in
	// errors for the other use of addConstraint. For this reason, we keep
	// things symmetric for now and will keep things as is, just avoiding the
	// closedness check.
	cc := c.CloseInfo.cc

	// TODO: can go, but do in separate CL.
	arc, _ = n.getArc(f, mode)

	root := arc.rootCloseContext(n.ctx)

	// Note: we are inserting the conjunct int the closeContext corresponding to
	// the constraint. This will add an arc to the respective closeContext. In
	// order to keep closedness information consistent, we need to ensure that,
	// if the arc was otherwise not added in this context, the arc is marked as
	// not really present.
	cc.insertConjunct(n.ctx, root, c, c.CloseInfo, mode, check, false)
}

func (n *nodeContext) insertPattern(pattern Value, c Conjunct) {
	n.assertInitialized()

	ctx := n.ctx
	cc := c.CloseInfo.cc

	// Collect patterns in root vertex. This allows comparing disjuncts for
	// equality as well as inserting new arcs down the line as they are
	// inserted.
	if n.insertConstraint(pattern, c) {
		// Match against full set of arcs from root, but insert in current vertex.
		// Hypothesis: this may not be necessary. Maybe for closedness.
		// TODO: may need to replicate the closedContext for patterns.
		// Also: Conjuncts for matching other arcs in this node may be different
		// for matching arcs using v.foo?, if we need to ensure that conjuncts
		// from arcs and patterns are grouped under the same vertex.
		// TODO: verify. See test Pattern 1b
		for _, a := range n.node.Arcs {
			if matchPattern(n.ctx, pattern, a.Label) {
				// TODO: is it necessary to check for uniqueness here?
				n.addConstraint(a, a.ArcType, c, true)
			}
		}
	}

	if cc.isTotal {
		return
	}

	// insert pattern in current set.
	// TODO: normalize patterns
	// TODO: do we only need to do this for closed contexts?
	for _, pc := range cc.Patterns {
		if Equal(ctx, pc, pattern, 0) {
			return
		}
	}
	cc.Patterns = append(cc.Patterns, pattern)
}

// isTotal reports whether pattern value p represents a full domain, that is,
// whether it is of type BasicType or Top.
func isTotal(p Value) bool {
	switch p.(type) {
	case *BasicType:
		return true
	case *Top:
		return true
	}
	return false
}

// injectClosed updates dst so that it only allows fields allowed by closed.
//
// It first ensures that the fields contained in dst are allowed by the fields
// and patterns defined in closed. It reports an error in the nodeContext if
// this is not the case.
func injectClosed(ctx *OpContext, closed, dst *closeContext) {
	for _, a := range dst.arcs {
		ca := a.dst
		switch f := ca.Label(); {
		case ca.src.ArcType == ArcOptional,
			// Without this continue, an evaluation error may be propagated to
			// parent nodes that are otherwise allowed.
			// TODO(evalv3): consider using ca.arcType instead.
			allowedInClosed(f),
			closed.allows(ctx, f):
		case ca.arcType == ArcPending:
			ca.arcType = ArcNotPresent
		default:
			ctx.notAllowedError(ca.src)
		}
	}

	if !dst.isClosed {
		// Since dst is not closed, it is safe to take all patterns from
		// closed.
		// This is only necessary for passing up patterns into embeddings. For
		// (the conjunction of) definitions the construction is handled
		// elsewhere.
		// TODO(perf): reclaim slice memory
		dst.Patterns = closed.Patterns

		dst.isClosed = true
	}
}

func (c *closeContext) allows(ctx *OpContext, f Feature) bool {
	ctx.Assertf(token.NoPos, c.conjunctCount == 0, "unexpected 0 conjunctCount")

	for _, b := range c.arcs {
		cb := b.dst
		if b.matched || f != cb.Label() {
			continue
		}
		// TODO: we could potentially remove the check  for ArcPending if we
		// explicitly set the arcType to ArcNonPresent when a comprehension
		// yields no results.
		if cb.arcType == ArcNotPresent || cb.arcType == ArcPending {
			continue
		}
		return true
	}
	return matchPattern(ctx, c.Expr, f)
}

func (ctx *OpContext) addPositions(c Conjunct) {
	if x, ok := c.x.(*ConjunctGroup); ok {
		for _, c := range *x {
			ctx.addPositions(c)
		}
	}
	if pos := c.Field(); pos != nil {
		ctx.AddPosition(pos)
	}
}

// notAllowedError reports a field not allowed error in n and sets the value
// for arc f to that error.
func (ctx *OpContext) notAllowedError(arc *Vertex) {
	// TODO(compat): ultimately we should strive to remove this explicit
	// reproduction of a bug to ensure compatibility with the old evaluator.
	if ctx.inLiteralSelectee > 0 {
		return
	}

	defer ctx.PopArc(ctx.PushArc(arc))

	defer ctx.ReleasePositions(ctx.MarkPositions())

	for _, c := range arc.Conjuncts {
		ctx.addPositions(c)
	}
	// TODO(0.7): Find another way to get this provenance information. Not
	// currently stored in new evaluator.
	// for _, s := range x.Structs {
	//  s.AddPositions(ctx)
	// }

	// TODO: use the arcType from the closeContext.
	if arc.ArcType == ArcPending {
		// arc.ArcType = ArcNotPresent
		// We do not know yet whether the arc will be present or not. Checking
		// this will be deferred until this is known, after the comprehension
		// has been evaluated.
		return
	}
	ctx.Assertf(ctx.pos(), !allowedInClosed(arc.Label), "unexpected disallowed definition, let, or hidden field")
	if ctx.HasErr() {
		// The next error will override this error when not run in Strict mode.
		return
	}

	// TODO: setting arc instead of n.node eliminates subfields. This may be
	// desirable or not, but it differs, at least from <=v0.6 behavior.
	arc.SetValue(ctx, ctx.NewErrf("field not allowed"))
	if arc.state != nil {
		arc.state.kind = 0
	}

	// TODO: remove? We are now setting it on both fields, which seems to be
	// necessary for now. But we should remove this as it often results in
	// a duplicate error.
	// v.SetValue(ctx, ctx.NewErrf("field not allowed"))

	// TODO: create a special kind of error that gets the positions
	// of the relevant locations upon request from the arc.
}

// mergeConjunctions combines two values into one. It never modifies an
// existing conjunction.
func mergeConjunctions(a, b Value) Value {
	if a == nil {
		return b
	}
	if b == nil {
		return a
	}
	ca, _ := a.(*Conjunction)
	cb, _ := b.(*Conjunction)
	n := 2
	if ca != nil {
		n += len(ca.Values) - 1
	}
	if cb != nil {
		n += len(cb.Values) - 1
	}
	vs := make([]Value, 0, n)
	if ca != nil {
		vs = append(vs, ca.Values...)
	} else {
		vs = append(vs, a)
	}
	if cb != nil {
		vs = append(vs, cb.Values...)
	} else {
		vs = append(vs, b)
	}
	// TODO: potentially order conjuncts to make matching more likely.
	return &Conjunction{Values: vs}
}

// finalizePattern updates c.Expr to a CUE Value representing all fields allowed
// by the pattern constraints of c. If this context or any of its direct
// children is closed, the result will be a conjunction of all these closed
// values. Otherwise it will be a disjunction of all its children. A nil value
// represents all values.
func (c *closeContext) finalizePattern() {
	switch {
	case c.Expr != nil: // Patterns and expression are already set.
		// NOTE: this panic check is just to verify using Expr unnecessarily. It
		// is not the end of the world to use c.Expr, it is just less efficient.
		// If this check causes trouble, it can be removed.
		// TODO(openlists): reenable once we support open list semantics.
		// if !c.isClosed {
		// 	panic("c.Expr set unexpectedly")
		// }
		return
	case c.isTotal: // All values are allowed always.
		return
	}

	// As this context is not closed, the pattern is somewhat meaningless.
	// It may still be useful for analysis.
	or := c.Patterns

	for cc := c.child; cc != nil; cc = cc.next {
		if cc.isTotal {
			return
		}
		// Could be closed, in which case it must also be an embedding.

		// TODO: simplify the values.
		switch x := cc.Expr.(type) {
		case nil:
		case *Disjunction:
			or = append(or, x.Values...)
		default:
			or = append(or, x)
		}
	}

	switch len(or) {
	case 0:
	case 1:
		c.Expr = or[0]
	default:
		// TODO: potentially order conjuncts to make matching more likely.
		c.Expr = &Disjunction{Values: or}
	}
}