1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
// Copyright 2025 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
import (
"fmt"
"log"
"strings"
"cuelang.org/go/cue/token"
)
// Assert panics if the condition is false. Assert can be used to check for
// conditions that are considers to break an internal variant or unexpected
// condition, but that nonetheless probably will be handled correctly down the
// line. For instance, a faulty condition could lead to error being caught
// down the road, but resulting in an inaccurate error message. In production
// code it is better to deal with the bad error message than to panic.
//
// It is advisable for each use of Assert to document how the error is expected
// to be handled down the line.
func Assertf(c *OpContext, b bool, format string, args ...interface{}) {
if c.Strict && !b {
panic(fmt.Sprintf("assertion failed: "+format, args...))
}
}
// Assertf either panics or reports an error to c if the condition is not met.
func (c *OpContext) Assertf(pos token.Pos, b bool, format string, args ...interface{}) {
if !b {
if c.Strict {
panic(fmt.Sprintf("assertion failed: "+format, args...))
}
c.addErrf(0, pos, format, args...)
}
}
func init() {
log.SetFlags(0)
}
var pMap = map[*Vertex]int{}
func (c *OpContext) Logf(v *Vertex, format string, args ...interface{}) {
if c.LogEval == 0 {
return
}
w := &strings.Builder{}
c.logID++
fmt.Fprintf(w, "%3d ", c.logID)
if c.nest > 0 {
for i := 0; i < c.nest; i++ {
w.WriteString("... ")
}
}
if v == nil {
fmt.Fprintf(w, format, args...)
_ = log.Output(2, w.String())
return
}
p := pMap[v]
if p == 0 {
p = len(pMap) + 1
pMap[v] = p
}
disjunctInfo := c.disjunctInfo()
fmt.Fprintf(w, "[n:%d/%v %s%s] ",
p, v.Path(), c.PathToString(v.Path()), disjunctInfo)
for i, a := range args {
switch x := a.(type) {
case Node:
args[i] = c.Str(x)
case Feature:
args[i] = x.SelectorString(c)
}
}
fmt.Fprintf(w, format, args...)
_ = log.Output(2, w.String())
}
// PathToString creates a pretty-printed path of the given list of features.
func (c *OpContext) PathToString(path []Feature) string {
var b strings.Builder
for i, f := range path {
if i > 0 {
b.WriteByte('.')
}
b.WriteString(f.SelectorString(c))
}
return b.String()
}
type disjunctInfo struct {
node *nodeContext
disjunctionID int // unique ID for sequence
disjunctionSeq int // index into node.disjunctions
numDisjunctions int // number of disjunctions
crossProductSeq int // index into node.disjuncts (previous results)
numPrevious int // index into node.disjuncts (previous results)
numDisjuncts int // index into node.disjuncts (previous results)
disjunctID int // unique ID for disjunct
disjunctSeq int // index into node.disjunctions[disjunctionSeq].disjuncts
holeID int // unique ID for hole
lhs Node // current LHS expression
rhs Node // current RHS expression
}
func (c *OpContext) currentDisjunct() *disjunctInfo {
if len(c.disjunctStack) == 0 {
panic("no disjunct")
}
return &c.disjunctStack[len(c.disjunctStack)-1]
}
func (n *nodeContext) pushDisjunctionTask() *disjunctInfo {
c := n.ctx
c.currentDisjunctionID++
id := disjunctInfo{
node: n,
disjunctionID: c.currentDisjunctionID,
}
c.disjunctStack = append(c.disjunctStack, id)
n.Logf("========= DISJUNCTION %d =========", c.currentDisjunctionID)
c.nest += 1
return c.currentDisjunct()
}
func (n *nodeContext) nextDisjunction(index, num, hole int) {
d := n.ctx.currentDisjunct()
d.disjunctionSeq = index + 1
d.numDisjunctions = num
d.holeID = hole
}
func (n *nodeContext) nextCrossProduct(index, num int, v *nodeContext) *disjunctInfo {
d := n.ctx.currentDisjunct()
d.crossProductSeq = index + 1
d.numPrevious = num
d.lhs = v.node.Value()
return d
}
func (n *nodeContext) nextDisjunct(index, num int, expr Node) {
d := n.ctx.currentDisjunct()
d.disjunctSeq = index + 1
d.numDisjuncts = num
d.rhs = expr
}
func (n *nodeContext) logDoDisjunct() *disjunctInfo {
c := n.ctx
c.stats.Disjuncts++
d := c.currentDisjunct()
d.disjunctID = int(c.stats.Disjuncts)
n.Logf("====== Do DISJUNCT %v & %v ======", d.lhs, d.rhs)
return d
}
func (d disjunctInfo) pop() {
c := d.node.ctx
c.nest -= 1
c.disjunctStack = c.disjunctStack[:len(c.disjunctStack)-1]
}
// disjunctInfo prints a header for log to indicate the current disjunct.
func (c *OpContext) disjunctInfo() string {
if len(c.disjunctStack) == 0 {
return ""
}
var b strings.Builder
for i, d := range c.disjunctStack {
if i != len(c.disjunctStack)-1 && d.disjunctID == 0 {
continue
}
if i != 0 {
b.WriteString(" =>")
}
// which disjunct
fmt.Fprintf(&b, " D%d:H%d:%d/%d",
d.disjunctionID, d.holeID, d.disjunctionSeq, d.numDisjunctions)
if d.crossProductSeq != 0 {
fmt.Fprintf(&b, " P%d/%d", d.crossProductSeq, d.numPrevious)
}
if d.disjunctID != 0 {
fmt.Fprintf(&b, " d%d:%d/%d",
d.disjunctID, d.disjunctSeq, d.numDisjuncts,
)
}
}
return b.String()
}
|