1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
import (
"bytes"
"strings"
"github.com/cockroachdb/apd/v3"
"cuelang.org/go/internal"
)
// SimplifyBounds collapses bounds if possible. The bound values must be
// concrete. It returns nil if the bound values cannot be collapsed.
//
// k represents additional type constraints, such as `int`.
func SimplifyBounds(ctx *OpContext, k Kind, x, y *BoundValue) Value {
xv := x.Value
yv := y.Value
cmp, xCat := opInfo(x.Op)
_, yCat := opInfo(y.Op)
// k := x.Kind() & y.Kind()
switch {
case xCat == yCat:
switch x.Op {
// NOTE: EqualOp should not happen, but include it defensively.
// Maybe an API would use it, for instance.
case EqualOp, NotEqualOp, MatchOp, NotMatchOp:
if test(ctx, EqualOp, xv, yv) {
return x
}
return nil // keep both bounds
}
// xCat == yCat && x.Op != NotEqualOp
// > a & >= b
// > a if a >= b
// >= b if a < b
// > a & > b
// > a if a >= b
// > b if a < b
// >= a & > b
// >= a if a > b
// > b if a <= b
// >= a & >= b
// >= a if a > b
// >= b if a <= b
// inverse is true as well.
// Tighten bound.
if test(ctx, cmp, xv, yv) {
return x
}
return y
case xCat == -yCat && k == StringKind:
if xCat == -1 {
x, y = y, x
xv, yv = yv, xv
}
a, aOK := xv.(*String)
b, bOK := yv.(*String)
if !aOK || !bOK {
break
}
switch diff := strings.Compare(a.Str, b.Str); diff {
case -1:
case 0:
if x.Op == GreaterEqualOp && y.Op == LessEqualOp {
return ctx.NewString(a.Str)
}
fallthrough
case 1:
return ctx.NewErrf("incompatible string bounds %v and %v", y, x)
}
case xCat == -yCat && k == BytesKind:
if xCat == -1 {
x, y = y, x
xv, yv = yv, xv
}
a, aOK := xv.(*Bytes)
b, bOK := yv.(*Bytes)
if !aOK || !bOK {
break
}
switch diff := bytes.Compare(a.B, b.B); diff {
case -1:
case 0:
if x.Op == GreaterEqualOp && y.Op == LessEqualOp {
return ctx.newBytes(a.B)
}
fallthrough
case 1:
return ctx.NewErrf("incompatible bytes bounds %v and %v", y, x)
}
case xCat == -yCat:
if xCat == -1 {
x, y = y, x
xv, yv = yv, xv
}
a, aOK := xv.(*Num)
b, bOK := yv.(*Num)
if !aOK || !bOK {
break
}
var d, lo, hi apd.Decimal
lo.Set(&a.X)
hi.Set(&b.X)
if k&FloatKind == 0 {
// Readjust bounds for integers.
if x.Op == GreaterEqualOp {
// >=3.4 ==> >=4
_, _ = internal.BaseContext.Ceil(&lo, &a.X)
} else {
// >3.4 ==> >3
_, _ = internal.BaseContext.Floor(&lo, &a.X)
}
if y.Op == LessEqualOp {
// <=2.3 ==> <= 2
_, _ = internal.BaseContext.Floor(&hi, &b.X)
} else {
// <2.3 ==> < 3
_, _ = internal.BaseContext.Ceil(&hi, &b.X)
}
}
cond, err := internal.BaseContext.Sub(&d, &hi, &lo)
if cond.Inexact() || err != nil {
break
}
// attempt simplification
// numbers
// >=a & <=b
// a if a == b
// _|_ if a < b
// >=a & <b
// _|_ if b <= a
// >a & <=b
// _|_ if b <= a
// >a & <b
// _|_ if b <= a
// integers
// >=a & <=b
// a if b-a == 0
// _|_ if a < b
// >=a & <b
// a if b-a == 1
// _|_ if b <= a
// >a & <=b
// b if b-a == 1
// _|_ if b <= a
// >a & <b
// a+1 if b-a == 2
// _|_ if b <= a
switch diff, err := d.Int64(); {
case diff == 1:
if k&FloatKind == 0 {
if x.Op == GreaterEqualOp && y.Op == LessThanOp {
return ctx.newNum(&lo, k&NumberKind, x, y)
}
if x.Op == GreaterThanOp && y.Op == LessEqualOp {
return ctx.newNum(&hi, k&NumberKind, x, y)
}
if x.Op == GreaterThanOp && y.Op == LessThanOp {
return ctx.NewErrf("incompatible integer bounds %v and %v", x, y)
}
}
case diff == 2:
if k&FloatKind == 0 && x.Op == GreaterThanOp && y.Op == LessThanOp {
_, _ = internal.BaseContext.Add(&d, d.SetInt64(1), &lo)
return ctx.newNum(&d, k&NumberKind, x, y)
}
case diff == 0 && err == nil:
if x.Op == GreaterEqualOp && y.Op == LessEqualOp {
return ctx.newNum(&lo, k&NumberKind, x, y)
}
fallthrough
case d.Negative:
if k == IntKind {
return ctx.NewErrf("incompatible integer bounds %v and %v", y, x)
} else {
return ctx.NewErrf("incompatible number bounds %v and %v", y, x)
}
}
case x.Op == NotEqualOp:
if !test(ctx, y.Op, xv, yv) {
return y
}
case y.Op == NotEqualOp:
if !test(ctx, x.Op, yv, xv) {
return x
}
}
return nil
}
func opInfo(op Op) (cmp Op, norm int) {
switch op {
case GreaterThanOp:
return GreaterEqualOp, 1
case GreaterEqualOp:
return GreaterThanOp, 1
case LessThanOp:
return LessEqualOp, -1
case LessEqualOp:
return LessThanOp, -1
case NotEqualOp:
return NotEqualOp, 0
case MatchOp:
return MatchOp, 2
case NotMatchOp:
return NotMatchOp, 3
}
panic("cue: unreachable")
}
func test(ctx *OpContext, op Op, a, b Value) bool {
if b, ok := BinOp(ctx, op, a, b).(*Bool); ok {
return b.B
}
return false
}
// SimplifyValidator simplifies non-bound validators.
//
// Currently this only checks for pure equality. In the future this can be used
// to simplify certain builtin validators analogously to how we simplify bounds
// now.
func SimplifyValidator(ctx *OpContext, v, w Conjunct) (c Conjunct, ok bool) {
switch x := v.x.(type) {
case *BuiltinValidator:
switch y := w.x.(type) {
case *BuiltinValidator:
if x == y {
return v, true
}
if x.Builtin != y.Builtin || len(x.Args) != len(y.Args) {
return c, false
}
for i, a := range x.Args {
b := y.Args[i]
if v, ok := a.(*Vertex); ok {
v.Finalize(ctx)
}
if v, ok := b.(*Vertex); ok {
v.Finalize(ctx)
}
if !Equal(ctx, a, b, CheckStructural) {
return c, false
}
}
return v, true
}
}
return c, false
}
|