File: unify.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (874 lines) | stat: -rw-r--r-- 24,417 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
// Copyright 2023 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package adt

import (
	"fmt"

	"cuelang.org/go/cue/token"
)

// TODO(mpvl): perhaps conjunctsProcessed is a better name for this.
func (v *Vertex) isInitialized() bool {
	return v.status == finalized || (v.state != nil && v.state.isInitialized)
}

func (n *nodeContext) assertInitialized() {
	if n != nil && n.ctx.isDevVersion() {
		if v := n.node; !v.isInitialized() {
			panic(fmt.Sprintf("vertex %p not initialized", v))
		}
	}
}

// isInProgress reports whether v is in the midst of being evaluated. This means
// that conjuncts have been scheduled, but that it has not been finalized.
func (v *Vertex) isInProgress() bool {
	return v.status != finalized && v.state != nil && v.state.isInitialized
}

func (v *Vertex) getBareState(c *OpContext) *nodeContext {
	if v.status == finalized { // TODO: use BaseValue != nil
		return nil
	}
	if v.state == nil {
		v.state = c.newNodeContext(v)
		v.state.initBare()
		v.state.refCount = 1
	}

	// An additional refCount for the current user.
	v.state.refCount += 1

	// TODO: see if we can get rid of ref counting after new evaluator is done:
	// the recursive nature of the new evaluator should make this unnecessary.

	return v.state
}

func (v *Vertex) getState(c *OpContext) *nodeContext {
	s := v.getBareState(c)
	if s != nil && !s.isInitialized {
		s.scheduleConjuncts()
	}
	return s
}

// initNode initializes a nodeContext for the evaluation of the given Vertex.
func (n *nodeContext) initBare() {
	v := n.node
	if v.Parent != nil && v.Parent.state != nil {
		v.state.depth = v.Parent.state.depth + 1
		n.blockOn(allAncestorsProcessed)
	}

	n.blockOn(scalarKnown | listTypeKnown | arcTypeKnown)

	if v.Label.IsDef() {
		v.ClosedRecursive = true
	}

	if v.Parent != nil {
		if v.Parent.ClosedRecursive {
			v.ClosedRecursive = true
		}
	}
}

func (n *nodeContext) scheduleConjuncts() {
	n.isInitialized = true

	v := n.node
	ctx := n.ctx

	ctx.stats.Unifications++

	// Set the cache to a cycle error to ensure a cyclic reference will result
	// in an error if applicable. A cyclic error may be ignored for
	// non-expression references. The cycle error may also be removed as soon
	// as there is evidence what a correct value must be, but before all
	// validation has taken place.
	//
	// TODO(cycle): having a more recursive algorithm would make this
	// special cycle handling unnecessary.
	v.BaseValue = cycle

	defer ctx.PopArc(ctx.PushArc(v))

	root := n.node.rootCloseContext(n.ctx)
	root.incDependent(n.ctx, INIT, nil) // decremented below

	for _, c := range v.Conjuncts {
		ci := c.CloseInfo
		ci.cc = root
		n.scheduleConjunct(c, ci)
	}

	root.decDependent(ctx, INIT, nil)
}

// TODO(evalv3): consider not returning a result at all.
func (v *Vertex) unify(c *OpContext, needs condition, mode runMode) bool {
	if c.LogEval > 0 {
		c.Logf(v, "Unify %v", fmt.Sprintf("%p", v))
		c.nest++
		defer func() {
			c.nest--
			c.Logf(v, "END Unify")
		}()
	}

	if c.evalDepth == 0 {
		defer func() {
			// This loop processes nodes that need to be evaluated, but should be
			// evaluated outside of the stack to avoid structural cycle detection.
			// See comment at toFinalize.
			a := c.toFinalize
			c.toFinalize = c.toFinalize[:0]
			for _, x := range a {
				x.Finalize(c)
			}
		}()
	}

	if mode == ignore {
		return false
	}

	// Note that the state of a node can be removed before the node is.
	// This happens with the close builtin, for instance.
	// See TestFromAPI in pkg export.
	// TODO(evalv3): find something more principled.
	if v.state == nil && v.cc() != nil && v.cc().conjunctCount == 0 {
		v.status = finalized
		return true
	}

	n := v.getState(c)
	if n == nil {
		return true // already completed
	}
	defer n.free()

	// Typically a node processes all conjuncts before processing its fields.
	// So this condition is very likely to trigger. If for some reason the
	// parent has not been processed yet, we could attempt to process more
	// of its tasks to increase the chances of being able to find the
	// information we are looking for here. For now we just continue as is.
	//
	// For dynamic nodes, the parent only exists to provide a path context.
	//
	// Note that if mode is final, we will guarantee that the conditions for
	// this if clause are met down the line. So we assume this is already the
	// case and set the signal accordingly if so.
	if !v.Rooted() || v.Parent.allChildConjunctsKnown() || mode == finalize {
		n.signal(allAncestorsProcessed)
	}

	nodeOnlyNeeds := needs &^ (subFieldsProcessed)

	if v.BaseValue == nil {
		v.BaseValue = cycle
	}
	n.updateScalar()
	if nodeOnlyNeeds == (scalarKnown|arcTypeKnown) && n.meets(nodeOnlyNeeds) {
		return true
	}

	// Detect a self-reference: if this node is under evaluation at the same
	// evaluation depth, this means that we have a self-reference, possibly
	// through an expression. As long as there is no request to process arcs or
	// finalize the value, we can and should stop processing here to avoid
	// spurious cycles.
	if v.status == evaluating &&
		v.state.evalDepth == c.evalDepth &&
		needs&fieldSetKnown == 0 &&
		mode != finalize {
		return false
	}

	v.status = evaluating

	defer n.unmarkDepth(n.markDepth())

	if n.node.ArcType == ArcPending {
		// forcefully do an early recursive evaluation to decide the state
		// of the arc. See https://cuelang.org/issue/3621.
		n.process(nodeOnlyNeeds, attemptOnly)
		if n.node.ArcType == ArcPending {
			for _, a := range n.node.Arcs {
				a.unify(c, needs, attemptOnly)
			}
		}
	}
	n.process(nodeOnlyNeeds, mode)

	defer c.PopArc(c.PushArc(v))

	w := v.DerefDisjunct()
	if w != v {
		// Should resolve with dereference.
		v.ClosedRecursive = w.ClosedRecursive
		v.status = w.status
		v.ChildErrors = CombineErrors(nil, v.ChildErrors, w.ChildErrors)
		v.Arcs = nil
		return w.state.meets(needs)
	}
	n.updateScalar()

	if n.aStruct != nil {
		n.updateNodeType(StructKind, n.aStruct, n.aStructID)
	}

	// First process all but the subfields.
	switch {
	case n.meets(nodeOnlyNeeds):
		// pass through next phase.
	case mode != finalize:
		// TODO: disjunctions may benefit from evaluation as much prematurely
		// as possible, as this increases the chances of premature failure.
		// We should consider doing a recursive "attemptOnly" evaluation here.
		return false
	}

	if n.isShared {
		if isCyclePlaceholder(n.origBaseValue) {
			n.origBaseValue = nil
		}
	} else if isCyclePlaceholder(n.node.BaseValue) {
		n.node.BaseValue = nil
	}
	if !n.isShared {
		// TODO(sharewithval): allow structure sharing if we only have validator
		// and references.
		// TODO: rewrite to use mode when we get rid of old evaluator.
		state := finalized
		n.validateValue(state)
	}

	if n.node.Label.IsLet() || n.meets(allAncestorsProcessed) {
		if cc := v.rootCloseContext(n.ctx); !cc.isDecremented { // TODO: use v.cc
			cc.decDependent(c, ROOT, nil) // REF(decrement:nodeDone)
			cc.isDecremented = true
		}
	}

	if v, ok := n.node.BaseValue.(*Vertex); ok && n.shareCycleType == NoCycle {
		if n.ctx.hasDepthCycle(v) {
			n.reportCycleError()
			return true
		}
		// We unify here to proactively detect cycles. We do not need to,
		// nor should we, if have have already found one.
		v.unify(n.ctx, needs, mode)
	}

	// At this point, no more conjuncts will be added, so we could decrement
	// the notification counters.

	switch {
	case n.completed&subFieldsProcessed != 0:
		// done

	case needs&subFieldsProcessed != 0:
		switch {
		case assertStructuralCycleV3(n):
			n.breakIncomingDeps(mode)
		// TODO: consider bailing on error if n.errs != nil.
		case n.completeAllArcs(needs, mode):
		}

		if mode == finalize {
			n.signal(subFieldsProcessed)
		}

		if v.BaseValue == nil {
			// TODO: this seems to not be possible. Possibly remove.
			state := finalized
			v.BaseValue = n.getValidators(state)
		}
		if v := n.node.Value(); v != nil && IsConcrete(v) {
			// Ensure that checks are not run again when this value is used
			// in a validator.
			checks := n.checks
			n.checks = n.checks[:0]
			for _, v := range checks {
				// TODO(errors): make Validate return bottom and generate
				// optimized conflict message. Also track and inject IDs
				// to determine origin location.s
				if b := c.Validate(v, n.node); b != nil {
					n.addBottom(b)
				}
			}
		}

	case needs&fieldSetKnown != 0:
		n.evalArcTypes(mode)
	}

	if err := n.getErr(); err != nil {
		n.errs = nil
		if b := n.node.Bottom(); b != nil {
			err = CombineErrors(nil, b, err)
		}
		n.setBaseValue(err)
	}

	if mode == attemptOnly {
		return n.meets(needs)
	}

	if mask := n.completed & needs; mask != 0 {
		// TODO: phase3: validation
		n.signal(mask)
	}

	n.finalizeDisjunctions()

	w = v.DerefValue() // Dereference anything, including shared nodes.
	if w != v {
		// Clear value fields that are now referred to in the dereferenced
		// value (w).
		v.ChildErrors = nil
		v.Arcs = nil

		// Set control fields that are referenced without dereferencing.
		if w.ClosedRecursive {
			v.ClosedRecursive = true
		}
		// NOTE: setting ClosedNonRecursive is not necessary, as it is
		// handled by scheduleValue.
		if w.HasEllipsis {
			v.HasEllipsis = true
		}
		v.status = w.status

		// Ensure that shared nodes comply to the same requirements as we
		// need for the current node.
		w.unify(c, needs, mode)

		return true
	}

	// TODO: adding this is wrong, but it should not cause the snippet below
	// to hang. Investigate.
	// v.Closed = v.cc.isClosed
	//
	// This hangs:
	// issue1940: {
	// 	#T: ["a", #T] | ["c", #T] | ["d", [...#T]]
	// 	#A: t: #T
	// 	#B: x: #A
	// 	#C: #B
	// 	#C: x: #A
	// }

	// validationCompleted
	if n.completed&(subFieldsProcessed) != 0 {
		n.node.HasEllipsis = n.node.cc().isTotal

		// The next piece of code used to address the following case
		// (order matters)
		//
		// 		c1: c: [string]: f2
		// 		f2: c1
		// 		Also: cycle/issue990
		//
		// However, with recent changes, it no longer matters. Simultaneously,
		// this causes a hang in the following case:
		//
		// 		_self: x: [...and(x)]
		// 		_self
		// 		x: [1]
		//
		// For this reason we disable it now. It may be the case that we need
		// to enable it for computing disjunctions.
		//
		n.incDepth()
		defer n.decDepth()

		if pc := n.node.PatternConstraints; pc != nil {
			for _, c := range pc.Pairs {
				c.Constraint.unify(n.ctx, allKnown, attemptOnly)
			}
		}

		n.node.updateStatus(finalized)

		defer n.unmarkOptional(n.markOptional())

		if DebugDeps {
			switch n.node.BaseValue.(type) {
			case *Disjunction:
				// If we have a disjunction, its individual disjuncts will
				// already have been checked. The node itself will likely have
				// spurious results, as it will contain unclosed holes.

			case *Vertex:
				// No need to check dereferenced results.

			default:
				RecordDebugGraph(n.ctx, n.node, "Finalize")
			}
		}
	}

	return n.meets(needs)
}

// Once returning, all arcs plus conjuncts that can be known are known.
//
// Proof:
//   - if there is a cycle, all completeNodeConjuncts will be called
//     repeatedly for all nodes in this cycle, and all tasks on the cycle
//     will have run at least once.
//   - any tasks that were blocking on values on this circle to be completed
//     will thus have to be completed at some point in time if they can.
//   - any tasks that were blocking on values outside of this ring will have
//     initiated its own execution, which is either not cyclic, and thus
//     completes, or is on a different cycle, in which case it completes as
//     well.
//
// Goal:
// - complete notifications
// - decrement reference counts for root and notify.
// NOT:
// - complete value. That is reserved for Unify.
func (n *nodeContext) completeNodeTasks(mode runMode) {
	n.assertInitialized()

	if n.isCompleting > 0 {
		return
	}
	n.isCompleting++
	defer func() {
		n.isCompleting--
	}()

	v := n.node
	c := n.ctx

	if n.ctx.LogEval > 0 {
		c.nest++
		defer func() {
			c.nest--
		}()
	}

	if !v.Label.IsLet() {
		if p := v.Parent; p != nil && p.state != nil {
			if !v.IsDynamic && n.completed&allAncestorsProcessed == 0 {
				p.state.completeNodeTasks(mode)
			}
		}
	}

	if v.IsDynamic || v.Label.IsLet() || v.Parent.allChildConjunctsKnown() {
		n.signal(allAncestorsProcessed)
	}

	if len(n.scheduler.tasks) != n.scheduler.taskPos {
		// TODO: do we need any more requirements here?
		const needs = valueKnown | fieldConjunctsKnown

		n.process(needs, mode)
		n.updateScalar()
	}

	n.breakIncomingNotifications(mode)

	// As long as ancestors are not processed, it is still possible for
	// conjuncts to be inserted. Until that time, it is not okay to decrement
	// theroot. It is not necessary to wait on tasks to complete, though,
	// as pending tasks will have their own dependencies on root, meaning it
	// is safe to decrement here.
	if !n.meets(allAncestorsProcessed) && !n.node.Label.IsLet() && mode != finalize {
		return
	}

	// At this point, no more conjuncts will be added, so we could decrement
	// the notification counters.

	if cc := v.rootCloseContext(n.ctx); !cc.isDecremented { // TODO: use v.cc
		cc.isDecremented = true

		cc.decDependent(n.ctx, ROOT, nil) // REF(decrement:nodeDone)
	}
}

func (n *nodeContext) updateScalar() {
	// Set BaseValue to scalar, but only if it was not set before. Most notably,
	// errors should not be discarded.
	if n.scalar != nil && (!n.node.IsErr() || isCyclePlaceholder(n.node.BaseValue)) {
		n.setBaseValue(n.scalar)
		n.signal(scalarKnown)
	}
}

func (n *nodeContext) completeAllArcs(needs condition, mode runMode) bool {
	if n.underlying != nil {
		// References within the disjunct may end up referencing the layer that
		// this node overlays. Also for these nodes we want to be able to detect
		// structural cycles early. For this reason, we also set the
		// evaluatingArcs status in the underlying layer.
		//
		// TODO: for now, this seems not necessary. Moreover, this will cause
		// benchmarks/cycle to display a spurious structural cycle. But it
		// shortens some of the structural cycle depths. So consider using this.
		//
		// status := n.underlying.status
		// n.underlying.updateStatus(evaluatingArcs) defer func() {
		// n.underlying.status = status }()
	}

	// TODO: this should only be done if n is not currently running tasks.
	// Investigate how to work around this.
	n.completeNodeTasks(finalize)

	n.breakIncomingDeps(mode)

	n.incDepth()
	defer n.decDepth()

	// XXX(0.7): only set success if needs complete arcs.
	success := true
	// Visit arcs recursively to validate and compute error. Use index instead
	// of range in case the Arcs grows during processing.
	for arcPos := 0; arcPos < len(n.node.Arcs); arcPos++ {
		a := n.node.Arcs[arcPos]

		if !a.unify(n.ctx, needs, mode) {
			success = false
		}

		// At this point we need to ensure that all notification cycles
		// for Arc a have been processed.

		if a.ArcType == ArcPending {
			// TODO: cancel tasks?
			// TODO: is this ever run? Investigate once new evaluator work is
			// complete.
			a.ArcType = ArcNotPresent
			continue
		}

		// TODO: harmonize this error with "cannot combine"
		switch {
		case a.ArcType > ArcRequired, !a.Label.IsString():
		case n.kind&StructKind == 0:
			if !n.node.IsErr() && !a.IsErr() {
				n.reportFieldMismatch(pos(a.Value()), nil, a.Label, n.node.Value())
			}
			// case !wasVoid:
			// case n.kind == TopKind:
			// 	// Theoretically it may be possible that a "void" arc references
			// 	// this top value where it really should have been a struct. One
			// 	// way to solve this is to have two passes over the arcs, where
			// 	// the first pass additionally analyzes whether comprehensions
			// 	// will yield values and "un-voids" an arc ahead of the rest.
			// 	//
			// 	// At this moment, though, I fail to see a possibility to create
			// 	// faulty CUE using this mechanism, though. At most error
			// 	// messages are a bit unintuitive. This may change once we have
			// 	// functionality to reflect on types.
			// 	if _, ok := n.node.BaseValue.(*Bottom); !ok {
			// 		n.node.BaseValue = &StructMarker{}
			// 		n.kind = StructKind
			// 	}
		}
	}

	k := 0
	for _, a := range n.node.Arcs {
		if a.ArcType != ArcNotPresent {
			n.node.Arcs[k] = a
			k++
		}
	}
	n.node.Arcs = n.node.Arcs[:k]

	for _, a := range n.node.Arcs {
		// Errors are allowed in let fields. Handle errors and failure to
		// complete accordingly.
		if !a.Label.IsLet() && a.ArcType <= ArcRequired {
			a := a.DerefValue()
			if err := a.Bottom(); err != nil {
				n.AddChildError(err)
			}
			success = true // other arcs are irrelevant
		}
	}

	// TODO: perhaps this code can go once we have builtins for comparing to
	// bottom.
	for _, c := range n.postChecks {
		ctx := n.ctx
		f := ctx.PushState(c.env, c.expr.Source())

		v := ctx.evalState(c.expr, oldOnly(finalized))
		v, _ = ctx.getDefault(v)
		v = Unwrap(v)

		switch _, isError := v.(*Bottom); {
		case isError == c.expectError:
		default:
			n.node.AddErr(ctx, &Bottom{
				Src:  c.expr.Source(),
				Code: CycleError,
				Node: n.node,
				Err: ctx.NewPosf(pos(c.expr),
					"circular dependency in evaluation of conditionals: %v changed after evaluation",
					ctx.Str(c.expr)),
			})
		}

		ctx.PopState(f)
	}

	// This should be called after all arcs have been processed, because
	// whether sharing is possible or not may depend on how arcs with type
	// ArcPending will resolve.
	n.finalizeSharing()

	// Strip struct literals that were not initialized and are not part
	// of the output.
	//
	// TODO(perf): we could keep track if any such structs exist and only
	// do this removal if there is a change of shrinking the list.
	k = 0
	for _, s := range n.node.Structs {
		if s.initialized {
			n.node.Structs[k] = s
			k++
		}
	}
	n.node.Structs = n.node.Structs[:k]

	// TODO: This seems to be necessary, but enables structural cycles.
	// Evaluator whether we still need this.
	//
	// pc := n.node.PatternConstraints
	// if pc == nil {
	// 	return success
	// }
	// for _, c := range pc.Pairs {
	// 	c.Constraint.Finalize(n.ctx)
	// }

	return success
}

func (n *nodeContext) evalArcTypes(mode runMode) {
	for _, a := range n.node.Arcs {
		if a.ArcType != ArcPending {
			continue
		}
		a.unify(n.ctx, arcTypeKnown, mode)
		// Ensure the arc is processed up to the desired level
		if a.ArcType == ArcPending {
			// TODO: cancel tasks?
			a.ArcType = ArcNotPresent
		}
	}
}

func root(v *Vertex) *Vertex {
	for v.Parent != nil {
		v = v.Parent
	}
	return v
}

func (v *Vertex) lookup(c *OpContext, pos token.Pos, f Feature, flags combinedFlags) *Vertex {
	task := c.current()
	needs := flags.conditions()
	runMode := flags.runMode()

	v = v.DerefValue()

	c.Logf(c.vertex, "LOOKUP %v", f)

	state := v.getState(c)
	if state != nil {
		// If the scheduler associated with this vertex was already running,
		// it means we have encountered a cycle. In that case, we allow to
		// proceed with partial data, in which case a "pending" arc will be
		// created to be completed later.

		// Propagate error if the error is from a different package. This
		// compensates for the fact that we do not fully evaluate the package.
		if state.hasErr() {
			err := state.getErr()
			if err != nil && err.Node != nil && root(err.Node) != root(v) {
				c.AddBottom(err)
			}
		}

		// A lookup counts as new structure. See the commend in Section
		// "Lookups in inline cycles" in cycle.go.
		state.hasNonCycle = true

		// TODO: ideally this should not be run at this point. Consider under
		// which circumstances this is still necessary, and at least ensure
		// this will not be run if node v currently has a running task.
		state.completeNodeTasks(attemptOnly)
	}

	// TODO: remove because unnecessary?
	if task != nil && task.state != taskRUNNING {
		return nil // abort, task is blocked or terminated in a cycle.
	}

	// TODO: verify lookup types.

	arc := v.LookupRaw(f)
	// We leave further dereferencing to the caller, but we do dereference for
	// the remainder of this function to be able to check the status.
	arcReturn := arc
	if arc != nil {
		arc = arc.DerefNonRooted()
		// TODO(perf): NonRooted is the minimum, but consider doing more.
		// arc = arc.DerefValue()
	}

	// TODO: clean up this logic:
	// - signal arcTypeKnown when ArcMember or ArcNotPresent is set,
	//   similarly to scalarKnown.
	// - make it clear we want to yield if it is now known if a field exists.

	var arcState *nodeContext
	switch {
	case arc != nil:
		if arc.ArcType == ArcMember {
			return arcReturn
		}
		arcState = arc.getState(c)

	case state == nil || state.meets(needTasksDone):
		// This arc cannot exist.
		v.reportFieldIndexError(c, pos, f)
		return nil

	default:
		arc = &Vertex{Parent: state.node, Label: f, ArcType: ArcPending}
		v.Arcs = append(v.Arcs, arc)
		arcState = arc.getState(c) // TODO: consider using getBareState.
	}

	if arcState != nil && (!arcState.meets(needTasksDone) || !arcState.meets(arcTypeKnown)) {
		needs |= arcTypeKnown
		// If this arc is not ArcMember, which it is not at this point,
		// any pending arcs could influence the field set.
		for _, a := range arc.Arcs {
			if a.ArcType == ArcPending {
				needs |= fieldSetKnown
				break
			}
		}
		arcState.completeNodeTasks(yield)

		// Child nodes, if pending and derived from a comprehension, may
		// still cause this arc to become not pending.
		if arc.ArcType != ArcMember {
			for _, a := range arcState.node.Arcs {
				if a.ArcType == ArcPending {
					a.unify(c, arcTypeKnown, runMode)
				}
			}
		}

		switch runMode {
		case ignore, attemptOnly:
			// TODO(cycle): ideally, we should be able to require that the
			// arcType be known at this point, but that does not seem to work.
			// Revisit once we have the structural cycle detection in place.

			// TODO: should we avoid notifying ArcPending vertices here?
			if task != nil {
				arcState.addNotify2(task.node.node, task.id)
			}
			if arc.ArcType == ArcPending {
				return arcReturn
			}
			goto handleArcType

		case yield:
			arcState.process(needs, yield)
			// continue processing, as successful processing may still result
			// in an invalid field.

		case finalize:
			// TODO: should we try to use finalize? Using it results in errors and this works. It would be more principled, though.
			arcState.process(needs, yield)
		}
	}

handleArcType:
	switch arc.ArcType {
	case ArcMember, ArcRequired:
		return arcReturn

	case ArcOptional:
		// Technically, this failure also applies to required fields. We assume
		// however, that if a reference field that is made regular will already
		// result in an error, so that piling up another error is not strictly
		// necessary. Note that the spec allows for eliding an error if it is
		// guaranteed another error is generated elsewhere. This does not
		// properly cover the case where a reference is made directly within the
		// definition, but this is fine for the purpose it serves.
		// TODO(refRequired): revisit whether referencing required fields should
		// fail.
		label := f.SelectorString(c.Runtime)
		b := &Bottom{
			Code: IncompleteError,
			Node: v,
			Err: c.NewPosf(pos,
				"cannot reference optional field: %s", label),
		}
		c.AddBottom(b)
		// TODO: yield failure
		return nil

	case ArcNotPresent:
		v.reportFieldIndexError(c, pos, f)
		return nil

	case ArcPending:
		// should not happen.
		panic("unreachable")
	}

	v.reportFieldIndexError(c, pos, f)
	return nil
}

// accept reports whether the given feature is allowed by the pattern
// constraints.
func (v *Vertex) accept(ctx *OpContext, f Feature) bool {
	// TODO: this is already handled by callers at the moment, but it may be
	// better design to move this here.
	// if v.LookupRaw(f) != nil {
	// 	return true, true
	// }

	v = v.DerefValue()

	pc := v.PatternConstraints
	if pc == nil {
		return false
	}

	return matchPattern(ctx, pc.Allowed, f)
}