1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
// Copyright 2022 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package export
import (
"fmt"
"strconv"
"strings"
"cuelang.org/go/cue/ast"
"cuelang.org/go/cue/token"
"cuelang.org/go/internal/core/adt"
"cuelang.org/go/internal/core/dep"
)
// This file contains the algorithm to contain a self-contained CUE file.
// TODO:
// - Handle below edge cases where a reference directly references the root
// of the exported main tree.
// - Inline smallish structs that themselves do not have outside
// references.
// - Overall better inlining.
// - Consider a shorthand for the `let X = { #x: foo }` annotation. Possibly
// allow `#{}`, or allow "let definitions", like `let #X = {}`.
// - Make doc comment of root the file comment.
// initPivotter initializes a selfContainedCloser if either a subtree
// is exported or imports need to be removed. It will not initialize one if
// neither is the case.
func (e *exporter) initPivotter(v *adt.Vertex) {
s := &pivotter{}
e.pivotter = s
s.x = e
s.depsMap = map[*adt.Vertex]*depData{}
s.refMap = map[adt.Resolver]*refData{}
s.linkDependencies(v)
}
func (e *exporter) completePivot(f *ast.File) {
s := e.pivotter
if s == nil || f == nil {
return
}
for _, d := range s.deps {
if !d.isExternalRoot() {
continue
}
s.addExternal(d)
}
f.Decls = append(f.Decls, s.decls...)
}
// A pivotter pivots a graph around a new root.
//
// Given a Vertex that itself is not the root of a configuration, the pivotter
// recomputes the configuration to have that node as a root instead.
//
// TODO: although this is currently part of Package export, it could be its own
// package down the line, if there is a proven need for it.
type pivotter struct {
x *exporter
deps []*depData
depsMap map[*adt.Vertex]*depData
refs []*refData
refMap map[adt.Resolver]*refData
decls []ast.Decl
}
type depData struct {
parent *depData
dstNode *adt.Vertex
dstImport *adt.ImportReference
ident adt.Feature
path []adt.Feature
useCount int // Other reference using this vertex
included bool
needTopLevel bool
}
// isExternalRoot reports whether d is an external node (a node referenced
// outside main exported tree) that has no further parent nodes that are
// referenced.
func (d *depData) isExternalRoot() bool {
return d.ident != 0
}
func (d *depData) usageCount() int {
return getParent(d).useCount
}
type refData struct {
dst *depData
}
func (v *depData) node() *adt.Vertex {
return v.dstNode
}
func (p *pivotter) linkDependencies(v *adt.Vertex) {
p.markDeps(v, nil)
// Explicitly add the root of the configuration.
p.markIncluded(v)
// Link one parent up
for _, d := range p.depsMap {
p.markParentsPass1(d)
}
// Get transitive closure of parents.
for _, d := range p.depsMap {
if d.parent != nil {
d.parent = getParent(d)
d.parent.useCount++
}
}
// Compute the paths for the parent nodes.
for _, d := range p.deps {
if d.parent == nil {
p.makeParentPath(d)
}
}
}
func getParent(d *depData) *depData {
for ; d.parent != nil; d = d.parent {
}
return d
}
func (p *pivotter) markDeps(v *adt.Vertex, pkg *adt.ImportReference) {
// TODO: sweep all child nodes and mark as no need for recursive checks.
cfg := &dep.Config{
Descend: true,
Pkg: pkg,
}
dep.Visit(cfg, p.x.ctx, v, func(d dep.Dependency) error {
node := d.Node
switch {
case p.refMap[d.Reference] != nil:
// Already done.
return nil
case d.Import() != nil:
// Only record nodes within import if we want to expand imports.
if !p.x.cfg.InlineImports {
return nil
}
// Never resolve core packages. Reasons:
// - most of them are builtins
// - they are available anyway
// - some of the types have special meaning, which would be lost
// by rewriting to their underlying type.
// TODO: support marking non-CUE packages as "special". This could
// be done, for instance, by marking them as "core" in the runtime
// and using a Runtime method to determine whether something is
// a core package, rather than relying on the presence of a dot.
path := d.Import().ImportPath.StringValue(p.x.ctx)
if !strings.ContainsRune(path, '.') {
return nil
}
case node.IsUnprocessed():
// This may happen for DynamicReferences.
return nil
}
data, ok := p.depsMap[node]
if !ok {
data = &depData{
dstNode: node,
dstImport: d.Import(),
}
p.depsMap[node] = data
p.deps = append(p.deps, data)
}
data.useCount++
ref := &refData{dst: data}
p.refs = append(p.refs, ref)
p.refMap[d.Reference] = ref
if !ok {
d.Recurse()
}
return nil
})
}
// markIncluded marks all referred nodes that are within the normal tree to be
// exported.
func (p *pivotter) markIncluded(v *adt.Vertex) {
d, ok := p.depsMap[v]
if !ok {
d = &depData{dstNode: v}
p.depsMap[v] = d
}
d.included = true
for _, a := range v.Arcs {
p.markIncluded(a)
}
}
// markParentPass1 marks the furthest ancestor node for which there is a
// dependency as its parent. Only dependencies that do not have a parent
// will be assigned to hidden reference.
func (p *pivotter) markParentsPass1(d *depData) {
for n := d.node().Parent; n != nil; n = n.Parent {
if v, ok := p.depsMap[n]; ok {
d.parent = v
}
}
}
func (p *pivotter) makeParentPath(d *depData) {
if d.parent != nil {
panic("not a parent")
}
if d.included || d.isExternalRoot() {
return
}
var f adt.Feature
if path := d.dstNode.Path(); len(path) > 0 {
f = path[len(path)-1]
} else if imp := d.dstImport; imp != nil {
f = imp.Label
} else {
// This may legitimately happen for internal vertices, such as
// comprehension scopes.
return
}
var str string
if f.IsInt() {
str = fmt.Sprintf("Index%d", f.Index())
} else {
str = f.IdentString(p.x.ctx)
str = strings.TrimLeft(str, "_#")
str = strings.ToUpper(str)
}
uf, _ := p.x.uniqueFeature(str)
d.path = []adt.Feature{uf}
d.ident = uf
// Make it a definition if we need it.
if d.dstNode.IsRecursivelyClosed() {
d.path = append(d.path, adt.MakeIdentLabel(p.x.ctx, "#x", ""))
}
}
// makeAlternativeReference computes the alternative path for the reference.
func (p *pivotter) makeAlternativeReference(ref *refData, r adt.Resolver) ast.Expr {
d := ref.dst
// Determine if the reference can be inline.
var path []adt.Feature
if d.parent == nil {
// Get canonical vertexData.
path = d.path
} else {
pathLen, pkgRef := relPathLength(r)
path = d.node().Path()
count := d.stepsToParent()
switch {
case ref.dst.included:
// Inside main tree.
if count > pathLen {
// Cannot refer to root, so cannot use >=
return nil
}
case pkgRef:
default:
// Inside hoisted value.
if count >= pathLen {
return nil
}
}
path = path[len(path)-count:]
path = append(d.parent.path, path...)
}
if len(path) == 0 {
path = append(path, p.x.ctx.StringLabel("ROOT"))
}
var x ast.Expr = p.x.ident(path[0])
for _, f := range path[1:] {
if f.IsInt() {
x = &ast.IndexExpr{
X: x,
Index: ast.NewLit(token.INT, strconv.Itoa(f.Index())),
}
} else {
x = &ast.SelectorExpr{
X: x,
Sel: p.x.stringLabel(f),
}
}
}
return x
}
func (d *depData) stepsToParent() int {
parent := d.parent.node()
count := 0
for p := d.node(); p != parent; p = p.Parent {
if p == nil {
break
}
count++
}
return count
}
func relPathLength(r adt.Resolver) (length int, newRoot bool) {
for {
var expr adt.Expr
switch x := r.(type) {
case *adt.FieldReference,
*adt.DynamicReference,
*adt.LetReference,
*adt.ValueReference:
length++
case *adt.ImportReference:
// This reference indicates a different vertex as root, but doesn't
// increase the path length.
return length, true
case *adt.SelectorExpr:
length++
expr = x.X
case *adt.IndexExpr:
length++
expr = x.X
}
switch x := expr.(type) {
case nil:
return length, false
case adt.Resolver:
r = x
default:
panic("unreachable")
}
}
}
// refExpr returns a substituted expression for a given reference, or nil if
// there are no changes. This function implements most of the policy to decide
// when an expression can be inlined.
func (p *pivotter) refExpr(r adt.Resolver) ast.Expr {
ref, ok := p.refMap[r]
if !ok {
return nil
}
dst := ref.dst
n := dst.node()
// Inline value, but only when this may not lead to an exponential
// expansion. We allow inlining when a value is only used once, or when
// it is a simple concrete scalar value.
switch {
case dst.included:
// Keep references that point inside the hoisted vertex.
// TODO: force hoisting. This would be akin to taking the interpretation
// that references that initially point outside the included vertex
// are external inputs too, even if they eventually point inside.
case p.x.inDefinition == 0 && n.IsRecursivelyClosed():
// We need to wrap the value in a definition.
case dst.usageCount() == 0:
// The root value itself.
case n.IsErr():
// Don't simplify for errors to make the position of the error clearer.
case !n.IsConcrete() && p.x.inExpression > 0:
// Don't simplify an expression that is known will fail.
case dst.usageCount() == 1 && p.x.inExpression == 0:
// Used only once.
fallthrough
case n.IsConcrete() && len(n.Arcs) == 0:
// Simple scalar value.
return p.x.expr(nil, n)
}
if r := p.makeAlternativeReference(ref, r); r != nil {
dst.needTopLevel = true
return r
}
return nil
}
// addExternal converts a vertex for an external reference.
func (p *pivotter) addExternal(d *depData) {
if !d.needTopLevel {
return
}
expr := p.x.expr(nil, d.node())
if len(d.path) > 1 {
expr = ast.NewStruct(&ast.Field{
Label: p.x.stringLabel(d.path[1]),
Value: expr,
})
}
let := &ast.LetClause{
Ident: p.x.ident(d.path[0]),
Expr: expr,
}
ast.SetRelPos(let, token.NewSection)
path := p.x.ctx.PathToString(d.node().Path())
var msg string
if d.dstImport == nil {
msg = fmt.Sprintf("//cue:path: %s", path)
} else {
pkg := d.dstImport.ImportPath.SelectorString(p.x.ctx)
if path == "" {
msg = fmt.Sprintf("//cue:path: %s", pkg)
} else {
msg = fmt.Sprintf("//cue:path: %s.%s", pkg, path)
}
}
cg := &ast.CommentGroup{
Doc: true,
List: []*ast.Comment{{Text: msg}},
}
ast.SetRelPos(cg, token.NewSection)
ast.AddComment(let, cg)
p.decls = append(p.decls, let)
}
|