1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package export
import (
"cmp"
"slices"
"cuelang.org/go/internal/core/adt"
"cuelang.org/go/internal/core/toposort"
)
// TODO: topological sort should go arguably in a more fundamental place as it
// may be needed to sort inputs for comprehensions.
// VertexFeatures returns the feature list of v. The list may include more
// features than for which there are arcs and also includes features for
// optional fields. It assumes the Structs fields are initialized and evaluated.
func VertexFeatures(c *adt.OpContext, v *adt.Vertex) []adt.Feature {
if c.TopoSort {
return toposort.VertexFeatures(c, v)
} else {
return vertexFeatures(v)
}
}
func vertexFeatures(v *adt.Vertex) []adt.Feature {
sets := extractFeatures(v.Structs)
m := sortArcs(sets) // TODO: use for convenience.
// Add features that are not in m. This may happen when fields were
// dynamically created.
var a []adt.Feature
for _, arc := range v.Arcs {
if _, ok := m[arc.Label]; !ok {
a = append(a, arc.Label)
}
}
sets = extractFeatures(v.Structs)
if len(a) > 0 {
sets = append(sets, a)
}
return sortedArcs(sets)
}
func extractFeatures(in []*adt.StructInfo) (a [][]adt.Feature) {
a = make([][]adt.Feature, 0, len(in))
for _, s := range in {
sorted := make([]adt.Feature, 0, len(s.Decls))
for _, e := range s.Decls {
switch x := e.(type) {
case *adt.Field:
sorted = append(sorted, x.Label)
}
}
// Lists with a single element may still be useful to distinguish
// between known and unknown fields: unknown fields are sorted last.
if len(sorted) > 0 {
a = append(a, sorted)
}
}
return a
}
// VertexFeaturesUnsorted returns the feature list of v. There will be
// no duplicate features in the returned list, but there is also no
// attempt made to sort the list.
func VertexFeaturesUnsorted(v *adt.Vertex) (features []adt.Feature) {
seen := make(map[adt.Feature]struct{})
for _, s := range v.Structs {
for _, decl := range s.Decls {
field, ok := decl.(*adt.Field)
if !ok {
continue
}
label := field.Label
if _, found := seen[label]; found {
continue
}
seen[label] = struct{}{}
features = append(features, label)
}
}
for _, arc := range v.Arcs {
label := arc.Label
if _, found := seen[label]; found {
continue
}
seen[label] = struct{}{}
features = append(features, label)
}
return features
}
// sortedArcs is like sortArcs, but returns the features of optional and
// required fields in an sorted slice. Ultimately, the implementation should
// use merge sort everywhere, and this will be the preferred method. Also,
// when querying optional fields as well, this helps identifying the optional
// fields.
func sortedArcs(fronts [][]adt.Feature) []adt.Feature {
m := sortArcs(fronts)
return sortedArcsFromMap(m)
}
func sortedArcsFromMap(m map[adt.Feature]int) []adt.Feature {
a := make([]adt.Feature, 0, len(m))
for k := range m {
a = append(a, k)
}
slices.SortFunc(a, func(a1, a2 adt.Feature) int { return -cmp.Compare(m[a1], m[a2]) })
return a
}
// sortArcs does a topological sort of arcs based on a variant of Kahn's
// algorithm. See
// https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
//
// It returns a map from feature to int where the feature with the highest
// number should be sorted first.
func sortArcs(fronts [][]adt.Feature) map[adt.Feature]int {
counts := map[adt.Feature]int{}
for _, a := range fronts {
if len(a) <= 1 {
continue // no dependencies
}
for _, f := range a[1:] {
counts[f]++
}
}
// We could use a Heap instead of simple linear search here if we are
// concerned about the time complexity.
index := -1
outer:
for {
lists:
for i, a := range fronts {
for len(a) > 0 {
f := a[0]
n := counts[f]
if n > 0 {
continue lists
}
// advance list and decrease dependency.
a = a[1:]
fronts[i] = a
if len(a) > 1 && counts[a[0]] > 0 {
counts[a[0]]--
}
if n == 0 { // may be head of other lists as well
counts[f] = index
index--
}
continue outer // progress
}
}
for _, a := range fronts {
if len(a) > 0 {
// Detected a cycle. Fire at will to make progress.
counts[a[0]] = 0
continue outer
}
}
break
}
return counts
}
|