File: toposort.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (193 lines) | stat: -rw-r--r-- 4,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package export

import (
	"cmp"
	"slices"

	"cuelang.org/go/internal/core/adt"
	"cuelang.org/go/internal/core/toposort"
)

// TODO: topological sort should go arguably in a more fundamental place as it
// may be needed to sort inputs for comprehensions.

// VertexFeatures returns the feature list of v. The list may include more
// features than for which there are arcs and also includes features for
// optional fields. It assumes the Structs fields are initialized and evaluated.
func VertexFeatures(c *adt.OpContext, v *adt.Vertex) []adt.Feature {
	if c.TopoSort {
		return toposort.VertexFeatures(c, v)
	} else {
		return vertexFeatures(v)
	}
}

func vertexFeatures(v *adt.Vertex) []adt.Feature {
	sets := extractFeatures(v.Structs)
	m := sortArcs(sets) // TODO: use for convenience.

	// Add features that are not in m. This may happen when fields were
	// dynamically created.
	var a []adt.Feature
	for _, arc := range v.Arcs {
		if _, ok := m[arc.Label]; !ok {
			a = append(a, arc.Label)
		}
	}

	sets = extractFeatures(v.Structs)
	if len(a) > 0 {
		sets = append(sets, a)
	}

	return sortedArcs(sets)
}

func extractFeatures(in []*adt.StructInfo) (a [][]adt.Feature) {
	a = make([][]adt.Feature, 0, len(in))
	for _, s := range in {
		sorted := make([]adt.Feature, 0, len(s.Decls))
		for _, e := range s.Decls {
			switch x := e.(type) {
			case *adt.Field:
				sorted = append(sorted, x.Label)
			}
		}

		// Lists with a single element may still be useful to distinguish
		// between known and unknown fields: unknown fields are sorted last.
		if len(sorted) > 0 {
			a = append(a, sorted)
		}
	}
	return a
}

// VertexFeaturesUnsorted returns the feature list of v. There will be
// no duplicate features in the returned list, but there is also no
// attempt made to sort the list.
func VertexFeaturesUnsorted(v *adt.Vertex) (features []adt.Feature) {
	seen := make(map[adt.Feature]struct{})

	for _, s := range v.Structs {
		for _, decl := range s.Decls {
			field, ok := decl.(*adt.Field)
			if !ok {
				continue
			}
			label := field.Label
			if _, found := seen[label]; found {
				continue
			}
			seen[label] = struct{}{}
			features = append(features, label)
		}
	}

	for _, arc := range v.Arcs {
		label := arc.Label
		if _, found := seen[label]; found {
			continue
		}
		seen[label] = struct{}{}
		features = append(features, label)
	}

	return features
}

// sortedArcs is like sortArcs, but returns the features of optional and
// required fields in an sorted slice. Ultimately, the implementation should
// use merge sort everywhere, and this will be the preferred method. Also,
// when querying optional fields as well, this helps identifying the optional
// fields.
func sortedArcs(fronts [][]adt.Feature) []adt.Feature {
	m := sortArcs(fronts)
	return sortedArcsFromMap(m)
}

func sortedArcsFromMap(m map[adt.Feature]int) []adt.Feature {
	a := make([]adt.Feature, 0, len(m))

	for k := range m {
		a = append(a, k)
	}

	slices.SortFunc(a, func(a1, a2 adt.Feature) int { return -cmp.Compare(m[a1], m[a2]) })

	return a
}

// sortArcs does a topological sort of arcs based on a variant of Kahn's
// algorithm. See
// https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
//
// It returns a map from feature to int where the feature with the highest
// number should be sorted first.
func sortArcs(fronts [][]adt.Feature) map[adt.Feature]int {
	counts := map[adt.Feature]int{}
	for _, a := range fronts {
		if len(a) <= 1 {
			continue // no dependencies
		}
		for _, f := range a[1:] {
			counts[f]++
		}
	}

	// We could use a Heap instead of simple linear search here if we are
	// concerned about the time complexity.

	index := -1
outer:
	for {
	lists:
		for i, a := range fronts {
			for len(a) > 0 {
				f := a[0]
				n := counts[f]
				if n > 0 {
					continue lists
				}

				// advance list and decrease dependency.
				a = a[1:]
				fronts[i] = a
				if len(a) > 1 && counts[a[0]] > 0 {
					counts[a[0]]--
				}

				if n == 0 { // may be head of other lists as well
					counts[f] = index
					index--
				}
				continue outer // progress
			}
		}

		for _, a := range fronts {
			if len(a) > 0 {
				// Detected a cycle. Fire at will to make progress.
				counts[a[0]] = 0
				continue outer
			}
		}
		break
	}

	return counts
}