File: graph.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (392 lines) | stat: -rw-r--r-- 11,043 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright 2024 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package toposort

import (
	"cmp"
	"math"
	"slices"

	"cuelang.org/go/internal/core/adt"
)

const (
	NodeUnsorted     = -1
	NodeInCurrentScc = -2
)

type Graph struct {
	nodes Nodes
}

type Node struct {
	Feature    adt.Feature
	Outgoing   Nodes
	Incoming   Nodes
	structMeta *structMeta
	// temporary state for calculating the Strongly Connected
	// Components of a graph.
	sccNodeState *sccNodeState
	// temporary state for calculating the Elementary Cycles of a
	// graph.
	ecNodeState *ecNodeState
	position    int
}

func (n *Node) IsSorted() bool {
	return n.position >= 0
}

// SafeName returns a string useful for debugging, regardless of the
// type of the feature. So for IntLabels, you'll get back `1`, `10`
// etc; for identifiers, you may get back a string with quotes in it,
// eg `"runs-on"`. So this is not useful for comparisons, but it is
// useful (and safe) for debugging.
func (n *Node) SafeName(index adt.StringIndexer) string {
	return n.Feature.SelectorString(index)
}

type Nodes []*Node

func (nodes Nodes) Features() []adt.Feature {
	features := make([]adt.Feature, len(nodes))
	for i, node := range nodes {
		features[i] = node.Feature
	}
	return features
}

type edge struct {
	from adt.Feature
	to   adt.Feature
}

type GraphBuilder struct {
	allowEdges     bool
	edgesSet       map[edge]struct{}
	nodesByFeature map[adt.Feature]*Node
}

// NewGraphBuilder is the constructor for GraphBuilder.
//
// If you disallow edges, then nodes can still be added to the graph,
// and the [GraphBuilder.AddEdge] method will not error, but edges
// will never be added between nodes. This has the effect that
// topological ordering is not possible.
func NewGraphBuilder(allowEdges bool) *GraphBuilder {
	return &GraphBuilder{
		allowEdges:     allowEdges,
		edgesSet:       make(map[edge]struct{}),
		nodesByFeature: make(map[adt.Feature]*Node),
	}
}

// Adds an edge between the two features. Nodes for the features will
// be created if they don't already exist. This method is idempotent:
// multiple calls with the same arguments will not create multiple
// edges, nor error.
func (builder *GraphBuilder) AddEdge(from, to adt.Feature) {
	if !builder.allowEdges {
		builder.EnsureNode(from)
		builder.EnsureNode(to)
		return
	}

	edge := edge{from: from, to: to}
	if _, found := builder.edgesSet[edge]; found {
		return
	}

	builder.edgesSet[edge] = struct{}{}
	fromNode := builder.EnsureNode(from)
	toNode := builder.EnsureNode(to)
	fromNode.Outgoing = append(fromNode.Outgoing, toNode)
	toNode.Incoming = append(toNode.Incoming, fromNode)
}

// Ensure that a node for this feature exists. This is necessary for
// features that are not necessarily connected to any other feature.
func (builder *GraphBuilder) EnsureNode(feature adt.Feature) *Node {
	node, found := builder.nodesByFeature[feature]
	if !found {
		node = &Node{Feature: feature, position: NodeUnsorted}
		builder.nodesByFeature[feature] = node
	}
	return node
}

func (builder *GraphBuilder) Build() *Graph {
	nodesByFeature := builder.nodesByFeature
	nodes := make(Nodes, 0, len(nodesByFeature))
	for _, node := range nodesByFeature {
		nodes = append(nodes, node)
	}
	return &Graph{nodes: nodes}
}

type indexComparison struct{ adt.StringIndexer }

func (index *indexComparison) compareNodeByName(a, b *Node) int {
	aFeature, bFeature := a.Feature, b.Feature
	aIsInt, bIsInt := aFeature.Typ() == adt.IntLabel, bFeature.Typ() == adt.IntLabel

	switch {
	case aIsInt && bIsInt:
		return cmp.Compare(aFeature.Index(), bFeature.Index())
	case aIsInt:
		return -1
	case bIsInt:
		return 1
	default:
		return cmp.Compare(aFeature.RawString(index), bFeature.RawString(index))
	}
}

func (index *indexComparison) compareCyclesByNames(a, b *Cycle) int {
	return slices.CompareFunc(a.Nodes, b.Nodes, index.compareNodeByName)
}

func (index *indexComparison) compareComponentsByNodes(a, b *StronglyConnectedComponent) int {
	return slices.CompareFunc(a.Nodes, b.Nodes, index.compareNodeByName)
}

func chooseCycleEntryNode(cycle *Cycle) (entryNode *Node, enabledSince, brokenEdgeCount int) {
	enabledSince = math.MaxInt

	for _, cycleNode := range cycle.Nodes {
		if cycleNode.IsSorted() {
			// this node is already in the sorted result
			continue
		}
	NextNodeIncoming:
		for _, incoming := range cycleNode.Incoming {
			position := incoming.position

			if position < 0 {
				// this predecessor node has not yet been added to the sorted
				// result.
				for _, cycleNode1 := range cycle.Nodes {
					// ignore this predecessor node if it is part of this cycle.
					if cycleNode1 == incoming {
						continue NextNodeIncoming
					}
				}
				brokenEdgeCount++
				continue NextNodeIncoming
			}

			// this predecessor node must already be in the sorted output.
			if position < enabledSince {
				enabledSince = position
				entryNode = cycleNode
			}
		}
	}
	return entryNode, enabledSince, brokenEdgeCount
}

func chooseCycle(indexCmp *indexComparison, unusedCycles []*Cycle) *Cycle {
	chosenCycleIdx := -1
	chosenCycleBrokenEdgeCount := math.MaxInt
	chosenCycleEnabledSince := math.MaxInt
	var chosenCycleEntryNode *Node

	for i, cycle := range unusedCycles {
		if cycle == nil {
			continue
		}
		debug("cycle %d: %v\n", i, cycle)
		entryNode, enabledSince, brokenEdgeCount := chooseCycleEntryNode(cycle)

		if entryNode == nil {
			entryNode = slices.MinFunc(
				cycle.Nodes, indexCmp.compareNodeByName)
		}

		debug("cycle %v; edgeCount %v; enabledSince %v; entryNode %v\n",
			cycle, brokenEdgeCount, enabledSince,
			entryNode.SafeName(indexCmp))

		cycleIsBetter := chosenCycleIdx == -1
		// this is written out long-form for ease of readability
		switch {
		case cycleIsBetter:
			// noop
		case brokenEdgeCount < chosenCycleBrokenEdgeCount:
			cycleIsBetter = true
		case brokenEdgeCount > chosenCycleBrokenEdgeCount:
			// noop - only continue if ==

		case enabledSince < chosenCycleEnabledSince:
			cycleIsBetter = true
		case enabledSince > chosenCycleEnabledSince:
			// noop - only continue if ==

		case indexCmp.compareNodeByName(entryNode, chosenCycleEntryNode) < 0:
			cycleIsBetter = true
		case entryNode == chosenCycleEntryNode:
			cycleIsBetter =
				indexCmp.compareCyclesByNames(cycle, unusedCycles[chosenCycleIdx]) < 0
		}

		if cycleIsBetter {
			chosenCycleIdx = i
			chosenCycleBrokenEdgeCount = brokenEdgeCount
			chosenCycleEnabledSince = enabledSince
			chosenCycleEntryNode = entryNode
		}
	}

	if chosenCycleEntryNode == nil {
		return nil
	}

	debug("Chose cycle: %v; entering at node: %s\n",
		unusedCycles[chosenCycleIdx], chosenCycleEntryNode.SafeName(indexCmp))
	cycle := unusedCycles[chosenCycleIdx]
	unusedCycles[chosenCycleIdx] = nil
	cycle.RotateToStartAt(chosenCycleEntryNode)
	return cycle
}

// Sort the features of the graph into a single slice.
//
// As far as possible, a topological sort is used.
//
// Whenever there is choice as to which feature should occur next, a
// lexicographical comparison is done, and minimum feature chosen.
//
// Whenever progress cannot be made due to needing to enter into
// cycles, the cycle to enter into, and the node of that cycle with
// which to start, is selected based on:
//
//  1. minimising the number of incoming edges that are violated
//  2. chosing a node which was reachable as early as possible
//  3. chosing a node with a smaller feature name (lexicographical)
func (graph *Graph) Sort(index adt.StringIndexer) []adt.Feature {
	indexCmp := &indexComparison{index}

	nodesSorted := make(Nodes, 0, len(graph.nodes))

	scc := graph.StronglyConnectedComponents()
	var sccReady []*StronglyConnectedComponent
	for _, component := range scc {
		component.visited = false
		slices.SortFunc(component.Nodes, indexCmp.compareNodeByName)
		if len(component.Incoming) == 0 {
			sccReady = append(sccReady, component)
		}
	}
	slices.SortFunc(sccReady, indexCmp.compareComponentsByNodes)

	sccVisitedCount := 0
	for sccVisitedCount != len(scc) {
		sccCurrent := sccReady[0]
		sccReady = sccReady[1:]
		if sccCurrent.visited {
			continue
		}
		sccCurrent.visited = true
		sccVisitedCount++
		debug("scc current: %p %v\n", sccCurrent, sccCurrent)
		var cyclesCurrent []*Cycle

		var nodesReady Nodes
	NextNode:
		for _, node := range sccCurrent.Nodes {
			node.position = NodeInCurrentScc
			for _, required := range node.Incoming {
				if !required.IsSorted() {
					continue NextNode
				}
			}
			nodesReady = append(nodesReady, node)
		}
		slices.SortFunc(nodesReady, indexCmp.compareNodeByName)

		requiredLen := len(nodesSorted) + len(sccCurrent.Nodes)
		for requiredLen != len(nodesSorted) {
			if len(nodesReady) == 0 {
				debug("Stuck after: %v\n", nodesSorted)
				if cyclesCurrent == nil {
					cyclesCurrent = sccCurrent.ElementaryCycles()
					debug("cycles current: %v\n", cyclesCurrent)
				}
				cycle := chooseCycle(indexCmp, cyclesCurrent)
				if cycle == nil {
					panic("No cycle found.")
				}
				nodesSorted, nodesReady = appendNodes(
					indexCmp, nodesSorted, cycle.Nodes, nodesReady)

			} else {
				nodesSorted, nodesReady = appendNodes(
					indexCmp, nodesSorted, nodesReady[:1], nodesReady[1:])
			}
		}

		sccReadyNeedsSorting := false
	SccNextOutgoing:
		for _, next := range sccCurrent.Outgoing {
			for _, required := range next.Incoming {
				if !required.visited {
					continue SccNextOutgoing
				}
			}
			sccReady = append(sccReady, next)
			sccReadyNeedsSorting = true
		}
		if sccReadyNeedsSorting {
			slices.SortFunc(sccReady, indexCmp.compareComponentsByNodes)
		}
	}

	return nodesSorted.Features()
}

func appendNodes(indexCmp *indexComparison, nodesSorted, nodesReady, nodesEnabled Nodes) (nodesSortedOut, nodesEnabledOut Nodes) {
	nodesReadyNeedsSorting := false
	for _, node := range nodesReady {
		if node.IsSorted() {
			continue
		}
		node.position = len(nodesSorted)
		nodesSorted = append(nodesSorted, node)

	NextOutgoing:
		for _, next := range node.Outgoing {
			if next.position != NodeInCurrentScc {
				continue
			}
			for _, required := range next.Incoming {
				if !required.IsSorted() {
					continue NextOutgoing
				}
			}
			debug("After %v, found new ready: %s\n",
				nodesSorted, next.SafeName(indexCmp))
			nodesEnabled = append(nodesEnabled, next)
			nodesReadyNeedsSorting = true
		}
	}
	if nodesReadyNeedsSorting {
		slices.SortFunc(nodesEnabled, indexCmp.compareNodeByName)
	}
	return nodesSorted, nodesEnabled
}

func debug(formatting string, args ...any) {
	//	fmt.Printf(formatting, args...)
}