1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
// Copyright 2024 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package toposort
import (
"slices"
)
type sccNodeState struct {
component *StronglyConnectedComponent
lowLink uint
index uint
visited bool
onStack bool
}
type StronglyConnectedComponent struct {
Nodes Nodes
Outgoing []*StronglyConnectedComponent
Incoming []*StronglyConnectedComponent
visited bool
}
// Calculate the Strongly Connected Components of the graph.
// https://en.wikipedia.org/wiki/Strongly_connected_component
//
// The components returned are topologically sorted (forwards), and
// form a DAG (this is the "condensation graph").
func (graph *Graph) StronglyConnectedComponents() []*StronglyConnectedComponent {
nodeStates := make([]sccNodeState, len(graph.nodes))
for i, node := range graph.nodes {
node.sccNodeState = &nodeStates[i]
}
scc := &sccFinderState{}
for _, node := range graph.nodes {
if !node.sccNodeState.visited {
scc.findSCC(node)
}
}
for _, node := range graph.nodes {
node.sccNodeState = nil
}
components := scc.components
for _, component := range components {
for _, next := range component.Outgoing {
next.Incoming = append(next.Incoming, component)
}
}
slices.Reverse(components)
return components
}
type sccFinderState struct {
components []*StronglyConnectedComponent
stack Nodes
counter uint
}
// This is Tarjan's algorithm from 1972.
//
// Robert Tarjan: Depth-first search and linear graph algorithms.
// SIAM Journal on Computing. Volume 1, Nr. 2 (1972), pp. 146-160.
//
// https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
func (scc *sccFinderState) findSCC(cur *Node) {
num := scc.counter
scc.counter++
curScc := cur.sccNodeState
curScc.lowLink = num
curScc.index = num
curScc.visited = true
curScc.onStack = true
scc.stack = append(scc.stack, cur)
for _, next := range cur.Outgoing {
nextScc := next.sccNodeState
if !nextScc.visited {
scc.findSCC(next)
curScc.lowLink = min(curScc.lowLink, nextScc.lowLink)
} else if nextScc.onStack {
// If the next node is already on the stack, the edge joining
// the current node and the next node completes a cycle.
curScc.lowLink = min(curScc.lowLink, nextScc.index)
}
}
// If the lowlink value of the node is equal to its DFS value, this
// is the head node of a strongly connected component that's shaped
// by the node and all nodes on the stack.
if curScc.lowLink == curScc.index {
component := &StronglyConnectedComponent{visited: true}
var componentNodes Nodes
for i := len(scc.stack) - 1; i >= 0; i-- {
nodeN := scc.stack[i]
nodeNScc := nodeN.sccNodeState
nodeNScc.onStack = false
nodeNScc.component = component
componentNodes = append(componentNodes, nodeN)
if nodeNScc == curScc {
scc.stack = scc.stack[:i]
break
}
}
var outgoingComponents []*StronglyConnectedComponent
for _, node := range componentNodes {
for _, nextNode := range node.Outgoing {
// This algorithm is depth-first, which means we can rely
// on the next component always existing before our own
// component.
nextComponent := nextNode.sccNodeState.component
if !nextComponent.visited {
nextComponent.visited = true
outgoingComponents = append(outgoingComponents, nextComponent)
}
}
}
component.Nodes = componentNodes
component.Outgoing = outgoingComponents
component.visited = false
for _, component := range outgoingComponents {
component.visited = false
}
scc.components = append(scc.components, component)
}
}
|