1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
// Copyright 2024 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package toposort
// Ultimately we need to build a graph of field names. Those field
// names can come from different constructions, such as:
//
// 1. Within a struct
//
// x: {z: _, y: _}
//
// When considering x, there should be a edge from z to y (written
// from now on as (z -> y)).
//
// 2. Explicit unification
//
// x: {z: _, y: _} & {x: _, w: _}
//
// When considering x, we want no edges between the arguments of the
// explicit unification operator '&'. There should only be edges (z
// -> y) and (x -> w). Through explicit unifications, cycles of field
// names can be introduced, e.g.:
//
// x: {z: _, y: _} & {y: _, w: _, z: _}
//
// 3. Embeddings
//
// b: {x: _, w: _}
// a: {z: _, y: _}
// c: { a, b }
//
// Here, a and b are embedded within c, and the order is important, so
// at a minimum we want edges (z -> y), (x -> w), and (y -> x). Other
// edges which don't introduce cycles are also acceptable (e.g. (z ->
// x), (y -> w) etc).
//
// 4. Implicit unification
//
// c: {z: _, y: _}
// c: {x: _, w: _}
//
// Here, like with embeddings, we choose that the source order is
// important, and so we must have a minimum of (z -> y), (x -> w) and
// (y -> x).
//
// Currently, the evaluator does not always provide enough information
// for us to be able to reliably identify all implicit unifications,
// especially where the ordering is enforced via some intermediate
// node. For example:
//
// a: {
// d: z: _
// d: t: _
// e: {x: _, w: _}
// }
// c: a.d & a.e
//
// Here, the information we get when sorting the fields of c (post
// evaluation), is insufficient to be able to establish the edge (z ->
// t), but it is sufficient to establish (x -> w). So in this case, we
// end up only with the edge (x -> w), and so the other field names
// fall back to lexicographical sorting.
//
// 5. Duplicates
//
// a: {z: _, y: _, z: int}
//
// b: c: _
// b: d: _
// b: c: int
//
// For a, we want to try to avoid adding an edge (y -> z), and for b
// we want to try to avoid adding an edge (d -> c). So within a
// regular struct, we do not add any additional edges when revisiting
// a declaration previously visited within the same struct. Similarly,
// for implicit unifications within the same file, we do not add any
// additional edges when revisiting a declaration.
//
// In order to get as close as possible to the desired ordering, we
// range over the Vertex's StructInfos, maintaining a list of Features
// which must come before any new Features, i.e. a frontier. For this
// to work, we need to sort the Vertex's StructInfos. Two approaches
// are used:
//
// 1. A topological sorting of a Vertex's StructInfos. This is
// effective for embeddings, and the relationship between embeddings
// and regular fields. For example:
//
// a: {y: _, x: _}
// b: {z: _, a}
//
// For b, a topological analysis will find that we can't enter the
// StructInfo containing y and x, until after we've processed the
// declaration of z.
//
// 2. However, even after a topological analysis, we'll often have
// many root StructInfos. We order these by source position (not the
// soure position of the StructInfo's StructLit itself, but of the
// references (if any) that resolved to the StructInfo's StructLit),
// then group them. If several StructInfos share the same position,
// then they are batched together and considered to be explictly
// unified. Then, consecutive batches of explicitly unified
// StructInfos are grouped together.
//
// The result is that explicit unification is correctly
// identified. E.g.:
//
// a: {x: _}
// b: {z: int}
// c: {y: >10}
// o: a & b & c
//
// for o, the StructInfos corresponding to a, b and c will all be
// grouped together in a single batch and considered to be explicitly
// unified. Also, structInfos that correspond to the same position
// (including no position) will be treated as explicity unified, and
// so no weight will be given to their relative position within the
// Vertex's slice of StructInfos.
import (
"fmt"
"slices"
"cuelang.org/go/cue/token"
"cuelang.org/go/internal/core/adt"
)
type structMeta struct {
structInfo *adt.StructInfo
pos token.Pos
// Should this struct be considered to be part of an explicit
// unification (e.g. x & y)?
isExplicit bool
// Does this struct have no incoming edges?
isRoot bool
}
func (sMeta *structMeta) String() string {
var sl *adt.StructLit
if sMeta.structInfo != nil {
sl = sMeta.structInfo.StructLit
}
return fmt.Sprintf("{%p sl:%p %v (explicit? %v; root? %v)}",
sMeta, sl, sMeta.pos, sMeta.isExplicit, sMeta.isRoot)
}
func (sm *structMeta) hasDynamic(dynFieldsMap map[*adt.DynamicField][]adt.Feature) bool {
for _, decl := range sm.structInfo.Decls {
if dynField, ok := decl.(*adt.DynamicField); ok {
if _, found := dynFieldsMap[dynField]; found {
return true
}
}
}
return false
}
// We need to order a Vertex's StructInfos. To do that, we want a
// filename+position for every StructInfo.
//
// We build a map from every StructInfo's StructLit and all its decls
// to a *structMeta, using the structLit's position.
//
// The StructLit in a StructInfo may directly appear in the parent's
// arc conjuncts. In this case, the StructLit's position is the
// correct position to use. But the StructLit may have been reached
// via a FieldReference, or SelectorExpr or something else. We want
// the position of the reference, and not the StructLit itself. E.g.
//
// a: {x: 5}
// b: {y: 7}
// c: b
// c: a
//
// If we're ordering the fields of c, we want the position of b and a
// on lines 3 and 4, not the StructLits which declare a and b on lines
// 1 and 2. To do this, we walk through the Vertex's Arc's
// conjuncts. If a conjunct's Field has been reached via some
// resolver, then the conjunct's Refs will record that, and will allow
// us to update the Field's position (and hence the StructLit's
// position) to that of the reference.
//
// Additionally, we need to discover whether each StructLit is
// included as a result of explicit unification (c: a & b), implicit
// unification:
//
// c: b
// c: a
//
// or embedding:
//
// c: {
// b
// a
// }
//
// Explicit unification needs treating specially so to avoid incorrect
// edges between the fields of the lhs and rhs of the &. To do this,
// we look at the vertex's conjuncts. If a conjunct is a binary
// expression &, then we look up the structMeta for the arguments to
// the binary expression, and mark them as explicit unification.
func analyseStructs(v *adt.Vertex, builder *GraphBuilder) ([]*structMeta, map[adt.Decl][]*structMeta) {
structInfos := v.Structs
nodeToStructMeta := make(map[adt.Node][]*structMeta)
structMetas := make([]structMeta, len(structInfos))
// First pass: make sure we create all the structMetas and map to
// them from a StructInfo's StructLit, and all its internal
// Decls. Assume everything is a root. Initial attempt at recording
// a position, which will be correct only for direct use of literal
// structs in the calculation of vertex v.
for i, s := range structInfos {
sl := s.StructLit
sMeta := &structMetas[i]
sMeta.structInfo = s
sMeta.isRoot = true
if src := sl.Source(); src != nil {
sMeta.pos = src.Pos()
}
nodeToStructMeta[sl] = append(nodeToStructMeta[sl], sMeta)
for _, decl := range sl.Decls {
nodeToStructMeta[decl] = append(nodeToStructMeta[decl], sMeta)
}
}
roots := make([]*structMeta, 0, len(structMetas))
outgoing := make(map[adt.Decl][]*structMeta)
// Second pass: build outgoing map based on the StructInfo
// parent-child relationship. Children are necessarily not roots.
for i := range structMetas {
sMeta := &structMetas[i]
parentDecl := sMeta.structInfo.Decl
if _, found := nodeToStructMeta[parentDecl]; found {
outgoing[parentDecl] = append(outgoing[parentDecl], sMeta)
sMeta.isRoot = false
} else {
roots = append(roots, sMeta)
}
}
// If an arc's conjunct's Field is a node we care about, and it has
// been reached via resolution, then unwind those resolutions to
// uncover the position of the earliest reference.
for _, arc := range v.Arcs {
builder.EnsureNode(arc.Label)
arc.VisitLeafConjuncts(func(c adt.Conjunct) bool {
field := c.Field()
debug("self arc conjunct field %p :: %T, expr %p :: %T (%v)\n",
field, field, c.Expr(), c.Expr(), c.Expr().Source())
sMetas, found := nodeToStructMeta[field]
if !found {
return true
}
if src := field.Source(); src != nil {
for _, sMeta := range sMetas {
sMeta.pos = src.Pos()
}
}
refs := c.CloseInfo.CycleInfo.Refs
if refs == nil {
return true
}
debug(" ref %p :: %T (%v)\n",
refs.Ref, refs.Ref, refs.Ref.Source().Pos())
for refs.Next != nil {
refs = refs.Next
debug(" ref %p :: %T (%v)\n",
refs.Ref, refs.Ref, refs.Ref.Source().Pos())
}
nodeToStructMeta[refs.Ref] = append(nodeToStructMeta[refs.Ref], sMetas...)
if pos := refs.Ref.Source().Pos(); pos != token.NoPos {
for _, sMeta := range nodeToStructMeta[refs.Ref] {
sMeta.pos = pos
}
}
return true
})
}
// Explore our own conjuncts, and the decls from our StructList, to
// find explicit unifications, and mark structMetas accordingly.
var worklist []adt.Expr
v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
debug("self conjunct field %p :: %T, expr %p :: %T\n",
c.Field(), c.Field(), c.Expr(), c.Expr())
worklist = append(worklist, c.Expr())
return true
})
for _, si := range structInfos {
for _, decl := range si.StructLit.Decls {
if expr, ok := decl.(adt.Expr); ok {
worklist = append(worklist, expr)
}
}
}
for len(worklist) != 0 {
expr := worklist[0]
worklist = worklist[1:]
binExpr, ok := expr.(*adt.BinaryExpr)
if !ok || binExpr.Op != adt.AndOp {
continue
}
for _, expr := range []adt.Expr{binExpr.X, binExpr.Y} {
for _, sMeta := range nodeToStructMeta[expr] {
sMeta.isExplicit = true
debug(" now explicit: %v\n", sMeta)
}
}
worklist = append(worklist, binExpr.X, binExpr.Y)
}
return roots, outgoing
}
// Find all fields which have been created as a result of successful
// evaluation of a dynamic field name.
func dynamicFieldsFeatures(v *adt.Vertex) map[*adt.DynamicField][]adt.Feature {
var m map[*adt.DynamicField][]adt.Feature
for _, arc := range v.Arcs {
arc.VisitLeafConjuncts(func(c adt.Conjunct) bool {
if dynField, ok := c.Field().(*adt.DynamicField); ok {
if m == nil {
m = make(map[*adt.DynamicField][]adt.Feature)
}
m[dynField] = append(m[dynField], arc.Label)
}
return true
})
}
return m
}
type structMetaBatch []*structMeta
func (batch structMetaBatch) isExplicit() bool {
return len(batch) > 1 || (len(batch) == 1 && batch[0].isExplicit)
}
type structMetaBatches []structMetaBatch
func (batchesPtr *structMetaBatches) appendBatch(batch structMetaBatch) {
if len(batch) == 0 {
return
}
batches := *batchesPtr
if l := len(batches); l == 0 {
*batchesPtr = append(batches, batch)
} else if prevBatch := batches[l-1]; batch.isExplicit() &&
prevBatch.isExplicit() &&
batch[0].pos.Filename() == prevBatch[0].pos.Filename() {
batches[l-1] = append(batches[l-1], batch...)
} else {
*batchesPtr = append(batches, batch)
}
}
type vertexFeatures struct {
builder *GraphBuilder
dynFieldsMap map[*adt.DynamicField][]adt.Feature
outgoing map[adt.Decl][]*structMeta
}
func (vf *vertexFeatures) compareStructMeta(a, b *structMeta) int {
if c := a.pos.Compare(b.pos); c != 0 {
return c
}
aHasDyn := a.hasDynamic(vf.dynFieldsMap)
bHasDyn := b.hasDynamic(vf.dynFieldsMap)
switch {
case aHasDyn == bHasDyn:
return 0
case aHasDyn:
return 1 // gather dynamic fields at the end
default:
return -1
}
}
func VertexFeatures(ctx *adt.OpContext, v *adt.Vertex) []adt.Feature {
debug("\n*** V (%s %v %p) ***\n", v.Label.SelectorString(ctx), v.Label, v)
builder := NewGraphBuilder(!ctx.Config.SortFields)
dynFieldsMap := dynamicFieldsFeatures(v)
roots, outgoing := analyseStructs(v, builder)
vf := &vertexFeatures{
builder: builder,
dynFieldsMap: dynFieldsMap,
outgoing: outgoing,
}
slices.SortFunc(roots, vf.compareStructMeta)
debug("roots: %v\n", roots)
var batches structMetaBatches
var batch structMetaBatch
for _, root := range roots {
if len(batch) == 0 ||
(batch[0].pos == root.pos && !root.hasDynamic(dynFieldsMap)) {
batch = append(batch, root)
} else {
batches.appendBatch(batch)
batch = structMetaBatch{root}
}
}
batches.appendBatch(batch)
debug("batches: %v\n", batches)
var previous, next []adt.Feature
var previousBatch structMetaBatch
for _, batch := range batches {
explicit := batch.isExplicit()
if len(previousBatch) != 0 &&
previousBatch[0].pos.Filename() != batch[0].pos.Filename() {
previous = nil
}
for _, root := range batch {
root.isExplicit = explicit
debug("starting root. Explicit unification? %v\n", explicit)
next = append(next, vf.addEdges(previous, root)...)
}
previous = next
next = nil
previousBatch = batch
}
debug("edges: %v\n", builder.edgesSet)
return builder.Build().Sort(ctx)
}
func (vf *vertexFeatures) addEdges(previous []adt.Feature, sMeta *structMeta) []adt.Feature {
debug("--- S %p (%p :: %T) (sl: %p) (explicit? %v) ---\n",
sMeta, sMeta.structInfo.Decl, sMeta.structInfo.Decl,
sMeta.structInfo.StructLit, sMeta.isExplicit)
debug(" previous: %v\n", previous)
var next []adt.Feature
filename := sMeta.pos.Filename()
debug(" filename: %s (%v)\n", filename, sMeta.pos)
for i, decl := range sMeta.structInfo.Decls {
debug(" %p / %d: d (%p :: %T)\n", sMeta, i, decl, decl)
if bin, ok := decl.(*adt.BinaryExpr); ok {
debug(" binary expr: %p :: %T %v %p :: %T\n",
bin.X, bin.X, bin.Op, bin.Y, bin.Y)
}
currentLabel := adt.InvalidLabel
switch decl := decl.(type) {
case *adt.Field:
currentLabel = decl.Label
debug(" value %p :: %T (%v)\n", decl.Value, decl.Value, decl.Value)
if src := decl.Value.Source(); src != nil {
debug(" field value source: %v\n", src.Pos())
}
case *adt.DynamicField:
// This struct contains a dynamic field. If that dynamic
// field was successfully evaluated into a field, then insert
// that field into this chain.
if labels := vf.dynFieldsMap[decl]; len(labels) > 0 {
currentLabel = labels[0]
vf.dynFieldsMap[decl] = labels[1:]
}
}
if currentLabel != adt.InvalidLabel {
debug(" label %v\n", currentLabel)
node, exists := vf.builder.nodesByFeature[currentLabel]
if exists && node.structMeta == sMeta {
// same field within the same structLit
debug(" skipping 1\n")
} else if exists && !sMeta.isExplicit && sMeta.pos != token.NoPos &&
node.structMeta != nil &&
node.structMeta.pos.Filename() == filename {
// same field within the same file during implicit unification
debug(" skipping 2\n")
} else {
debug(" %v %v\n", node, exists)
node = vf.builder.EnsureNode(currentLabel)
node.structMeta = sMeta
next = append(next, currentLabel)
for _, prevLabel := range previous {
vf.builder.AddEdge(prevLabel, currentLabel)
}
previous = next
next = nil
}
}
if nextStructMetas := vf.outgoing[decl]; len(nextStructMetas) != 0 {
debug(" nextStructs: %v\n", nextStructMetas)
binExpr, isBinary := decl.(*adt.BinaryExpr)
isBinary = isBinary && binExpr.Op == adt.AndOp
for _, sMeta := range nextStructMetas {
sMeta.isExplicit = isBinary
edges := vf.addEdges(previous, sMeta)
if isBinary {
next = append(next, edges...)
} else {
previous = edges
}
}
if isBinary {
previous = next
next = nil
}
}
}
return previous
}
|