1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package metadata
import (
"sort"
"cuelang.org/go/internal/golangorgx/gopls/protocol"
"cuelang.org/go/internal/golangorgx/gopls/util/bug"
"golang.org/x/tools/go/packages"
)
// A Graph is an immutable and transitively closed graph of [Package] data.
type Graph struct {
// Packages maps package IDs to their associated Packages.
Packages map[PackageID]*Package
// ImportedBy maps package IDs to the list of packages that import them.
ImportedBy map[PackageID][]PackageID
// IDs maps file URIs to package IDs, sorted by (!valid, cli, packageID).
// A single file may belong to multiple packages due to tests packages.
//
// Invariant: all IDs present in the IDs map exist in the metadata map.
IDs map[protocol.DocumentURI][]PackageID
}
// Update creates a new Graph containing the result of applying the given
// updates to the receiver, though the receiver is not itself mutated. As a
// special case, if updates is empty, Update just returns the receiver.
//
// A nil map value is used to indicate a deletion.
func (g *Graph) Update(updates map[PackageID]*Package) *Graph {
if len(updates) == 0 {
// Optimization: since the graph is immutable, we can return the receiver.
return g
}
// Debugging golang/go#64227, golang/vscode-go#3126:
// Assert that the existing metadata graph is acyclic.
if cycle := cyclic(g.Packages); cycle != "" {
bug.Reportf("metadata is cyclic even before updates: %s", cycle)
}
// Assert that the updates contain no self-cycles.
for id, mp := range updates {
if mp != nil {
for _, depID := range mp.DepsByPkgPath {
if depID == id {
bug.Reportf("self-cycle in metadata update: %s", id)
}
}
}
}
// Copy pkgs map then apply updates.
pkgs := make(map[PackageID]*Package, len(g.Packages))
for id, mp := range g.Packages {
pkgs[id] = mp
}
for id, mp := range updates {
if mp == nil {
delete(pkgs, id)
} else {
pkgs[id] = mp
}
}
// Break import cycles involving updated nodes.
breakImportCycles(pkgs, updates)
return newGraph(pkgs)
}
// newGraph returns a new metadataGraph,
// deriving relations from the specified metadata.
func newGraph(pkgs map[PackageID]*Package) *Graph {
// Build the import graph.
importedBy := make(map[PackageID][]PackageID)
for id, mp := range pkgs {
for _, depID := range mp.DepsByPkgPath {
importedBy[depID] = append(importedBy[depID], id)
}
}
// Collect file associations.
uriIDs := make(map[protocol.DocumentURI][]PackageID)
for id, mp := range pkgs {
uris := map[protocol.DocumentURI]struct{}{}
for _, uri := range mp.CompiledGoFiles {
uris[uri] = struct{}{}
}
for _, uri := range mp.GoFiles {
uris[uri] = struct{}{}
}
for uri := range uris {
uriIDs[uri] = append(uriIDs[uri], id)
}
}
// Sort and filter file associations.
for uri, ids := range uriIDs {
sort.Slice(ids, func(i, j int) bool {
cli := IsCommandLineArguments(ids[i])
clj := IsCommandLineArguments(ids[j])
if cli != clj {
return clj
}
// 2. packages appear in name order.
return ids[i] < ids[j]
})
// Choose the best IDs for each URI, according to the following rules:
// - If there are any valid real packages, choose them.
// - Else, choose the first valid command-line-argument package, if it exists.
//
// TODO(rfindley): it might be better to track all IDs here, and exclude
// them later when type checking, but this is the existing behavior.
for i, id := range ids {
// If we've seen *anything* prior to command-line arguments package, take
// it. Note that ids[0] may itself be command-line-arguments.
if i > 0 && IsCommandLineArguments(id) {
uriIDs[uri] = ids[:i]
break
}
}
}
return &Graph{
Packages: pkgs,
ImportedBy: importedBy,
IDs: uriIDs,
}
}
// ReverseReflexiveTransitiveClosure returns a new mapping containing the
// metadata for the specified packages along with any package that
// transitively imports one of them, keyed by ID, including all the initial packages.
func (g *Graph) ReverseReflexiveTransitiveClosure(ids ...PackageID) map[PackageID]*Package {
seen := make(map[PackageID]*Package)
var visitAll func([]PackageID)
visitAll = func(ids []PackageID) {
for _, id := range ids {
if seen[id] == nil {
if mp := g.Packages[id]; mp != nil {
seen[id] = mp
visitAll(g.ImportedBy[id])
}
}
}
}
visitAll(ids)
return seen
}
// breakImportCycles breaks import cycles in the metadata by deleting
// Deps* edges. It modifies only metadata present in the 'updates'
// subset. This function has an internal test.
func breakImportCycles(metadata, updates map[PackageID]*Package) {
// 'go list' should never report a cycle without flagging it
// as such, but we're extra cautious since we're combining
// information from multiple runs of 'go list'. Also, Bazel
// may silently report cycles.
cycles := detectImportCycles(metadata, updates)
if len(cycles) > 0 {
// There were cycles (uncommon). Break them.
//
// The naive way to break cycles would be to perform a
// depth-first traversal and to detect and delete
// cycle-forming edges as we encounter them.
// However, we're not allowed to modify the existing
// Metadata records, so we can only break edges out of
// the 'updates' subset.
//
// Another possibility would be to delete not the
// cycle forming edge but the topmost edge on the
// stack whose tail is an updated node.
// However, this would require that we retroactively
// undo all the effects of the traversals that
// occurred since that edge was pushed on the stack.
//
// We use a simpler scheme: we compute the set of cycles.
// All cyclic paths necessarily involve at least one
// updated node, so it is sufficient to break all
// edges from each updated node to other members of
// the strong component.
//
// This may result in the deletion of dominating
// edges, causing some dependencies to appear
// spuriously unreachable. Consider A <-> B -> C
// where updates={A,B}. The cycle is {A,B} so the
// algorithm will break both A->B and B->A, causing
// A to no longer depend on B or C.
//
// But that's ok: any error in Metadata.Errors is
// conservatively assumed by snapshot.clone to be a
// potential import cycle error, and causes special
// invalidation so that if B later drops its
// cycle-forming import of A, both A and B will be
// invalidated.
for _, cycle := range cycles {
cyclic := make(map[PackageID]bool)
for _, mp := range cycle {
cyclic[mp.ID] = true
}
for id := range cyclic {
if mp := updates[id]; mp != nil {
for path, depID := range mp.DepsByImpPath {
if cyclic[depID] {
delete(mp.DepsByImpPath, path)
}
}
for path, depID := range mp.DepsByPkgPath {
if cyclic[depID] {
delete(mp.DepsByPkgPath, path)
}
}
// Set m.Errors to enable special
// invalidation logic in snapshot.clone.
if len(mp.Errors) == 0 {
mp.Errors = []packages.Error{{
Msg: "detected import cycle",
Kind: packages.ListError,
}}
}
}
}
}
// double-check when debugging
if false {
if cycles := detectImportCycles(metadata, updates); len(cycles) > 0 {
bug.Reportf("unbroken cycle: %v", cycles)
}
}
}
}
// cyclic returns a description of a cycle,
// if the graph is cyclic, otherwise "".
func cyclic(graph map[PackageID]*Package) string {
const (
unvisited = 0
visited = 1
onstack = 2
)
color := make(map[PackageID]int)
var visit func(id PackageID) string
visit = func(id PackageID) string {
switch color[id] {
case unvisited:
color[id] = onstack
case onstack:
return string(id) // cycle!
case visited:
return ""
}
if mp := graph[id]; mp != nil {
for _, depID := range mp.DepsByPkgPath {
if cycle := visit(depID); cycle != "" {
return string(id) + "->" + cycle
}
}
}
color[id] = visited
return ""
}
for id := range graph {
if cycle := visit(id); cycle != "" {
return cycle
}
}
return ""
}
// detectImportCycles reports cycles in the metadata graph. It returns a new
// unordered array of all cycles (nontrivial strong components) in the
// metadata graph reachable from a non-nil 'updates' value.
func detectImportCycles(metadata, updates map[PackageID]*Package) [][]*Package {
// We use the depth-first algorithm of Tarjan.
// https://doi.org/10.1137/0201010
//
// TODO(adonovan): when we can use generics, consider factoring
// in common with the other implementation of Tarjan (in typerefs),
// abstracting over the node and edge representation.
// A node wraps a Metadata with its working state.
// (Unfortunately we can't intrude on shared Metadata.)
type node struct {
rep *node
mp *Package
index, lowlink int32
scc int8 // TODO(adonovan): opt: cram these 1.5 bits into previous word
}
nodes := make(map[PackageID]*node, len(metadata))
nodeOf := func(id PackageID) *node {
n, ok := nodes[id]
if !ok {
mp := metadata[id]
if mp == nil {
// Dangling import edge.
// Not sure whether a go/packages driver ever
// emits this, but create a dummy node in case.
// Obviously it won't be part of any cycle.
mp = &Package{ID: id}
}
n = &node{mp: mp}
n.rep = n
nodes[id] = n
}
return n
}
// find returns the canonical node decl.
// (The nodes form a disjoint set forest.)
var find func(*node) *node
find = func(n *node) *node {
rep := n.rep
if rep != n {
rep = find(rep)
n.rep = rep // simple path compression (no union-by-rank)
}
return rep
}
// global state
var (
index int32 = 1
stack []*node
sccs [][]*Package // set of nontrivial strongly connected components
)
// visit implements the depth-first search of Tarjan's SCC algorithm
// Precondition: x is canonical.
var visit func(*node)
visit = func(x *node) {
x.index = index
x.lowlink = index
index++
stack = append(stack, x) // push
x.scc = -1
for _, yid := range x.mp.DepsByPkgPath {
y := nodeOf(yid)
// Loop invariant: x is canonical.
y = find(y)
if x == y {
continue // nodes already combined (self-edges are impossible)
}
switch {
case y.scc > 0:
// y is already a collapsed SCC
case y.scc < 0:
// y is on the stack, and thus in the current SCC.
if y.index < x.lowlink {
x.lowlink = y.index
}
default:
// y is unvisited; visit it now.
visit(y)
// Note: x and y are now non-canonical.
x = find(x)
if y.lowlink < x.lowlink {
x.lowlink = y.lowlink
}
}
}
// Is x the root of an SCC?
if x.lowlink == x.index {
// Gather all metadata in the SCC (if nontrivial).
var scc []*Package
for {
// Pop y from stack.
i := len(stack) - 1
y := stack[i]
stack = stack[:i]
if x != y || scc != nil {
scc = append(scc, y.mp)
}
if x == y {
break // complete
}
// x becomes y's canonical representative.
y.rep = x
}
if scc != nil {
sccs = append(sccs, scc)
}
x.scc = 1
}
}
// Visit only the updated nodes:
// the existing metadata graph has no cycles,
// so any new cycle must involve an updated node.
for id, mp := range updates {
if mp != nil {
if n := nodeOf(id); n.index == 0 { // unvisited
visit(n)
}
}
}
return sccs
}
|