File: map.go

package info (click to toggle)
golang-github-cue-lang-cue 0.12.0.-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,072 kB
  • sloc: sh: 57; makefile: 17
file content (322 lines) | stat: -rw-r--r-- 8,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// The persistent package defines various persistent data structures;
// that is, data structures that can be efficiently copied and modified
// in sublinear time.
package persistent

import (
	"fmt"
	"math/rand"
	"strings"
	"sync/atomic"

	"cuelang.org/go/internal/golangorgx/gopls/util/constraints"
)

// Implementation details:
// * Each value is reference counted by nodes which hold it.
// * Each node is reference counted by its parent nodes.
// * Each map is considered a top-level parent node from reference counting perspective.
// * Each change does always effectively produce a new top level node.
//
// Functions which operate directly with nodes do have a notation in form of
// `foo(arg1:+n1, arg2:+n2) (ret1:+n3)`.
// Each argument is followed by a delta change to its reference counter.
// In case if no change is expected, the delta will be `-0`.

// Map is an associative mapping from keys to values.
//
// Maps can be Cloned in constant time.
// Get, Set, and Delete operations are done on average in logarithmic time.
// Maps can be merged (via SetAll) in O(m log(n/m)) time for maps of size n and m, where m < n.
//
// Values are reference counted, and a client-supplied release function
// is called when a value is no longer referenced by a map or any clone.
//
// Internally the implementation is based on a randomized persistent treap:
// https://en.wikipedia.org/wiki/Treap.
//
// The zero value is ready to use.
type Map[K constraints.Ordered, V any] struct {
	// Map is a generic wrapper around a non-generic implementation to avoid a
	// significant increase in the size of the executable.
	root *mapNode
}

func (*Map[K, V]) less(l, r any) bool {
	return l.(K) < r.(K)
}

func (m *Map[K, V]) String() string {
	var buf strings.Builder
	buf.WriteByte('{')
	var sep string
	m.Range(func(k K, v V) {
		fmt.Fprintf(&buf, "%s%v: %v", sep, k, v)
		sep = ", "
	})
	buf.WriteByte('}')
	return buf.String()
}

type mapNode struct {
	key         any
	value       *refValue
	weight      uint64
	refCount    int32
	left, right *mapNode
}

type refValue struct {
	refCount int32
	value    any
	release  func(key, value any)
}

func newNodeWithRef[K constraints.Ordered, V any](key K, value V, release func(key, value any)) *mapNode {
	return &mapNode{
		key: key,
		value: &refValue{
			value:    value,
			release:  release,
			refCount: 1,
		},
		refCount: 1,
		weight:   rand.Uint64(),
	}
}

func (node *mapNode) shallowCloneWithRef() *mapNode {
	atomic.AddInt32(&node.value.refCount, 1)
	return &mapNode{
		key:      node.key,
		value:    node.value,
		weight:   node.weight,
		refCount: 1,
	}
}

func (node *mapNode) incref() *mapNode {
	if node != nil {
		atomic.AddInt32(&node.refCount, 1)
	}
	return node
}

func (node *mapNode) decref() {
	if node == nil {
		return
	}
	if atomic.AddInt32(&node.refCount, -1) == 0 {
		if atomic.AddInt32(&node.value.refCount, -1) == 0 {
			if node.value.release != nil {
				node.value.release(node.key, node.value.value)
			}
			node.value.value = nil
			node.value.release = nil
		}
		node.left.decref()
		node.right.decref()
	}
}

// Clone returns a copy of the given map. It is a responsibility of the caller
// to Destroy it at later time.
func (pm *Map[K, V]) Clone() *Map[K, V] {
	return &Map[K, V]{
		root: pm.root.incref(),
	}
}

// Destroy destroys the map.
//
// After Destroy, the Map should not be used again.
func (pm *Map[K, V]) Destroy() {
	// The implementation of these two functions is the same,
	// but their intent is different.
	pm.Clear()
}

// Clear removes all entries from the map.
func (pm *Map[K, V]) Clear() {
	pm.root.decref()
	pm.root = nil
}

// Keys returns all keys present in the map.
func (pm *Map[K, V]) Keys() []K {
	var keys []K
	pm.root.forEach(func(k, _ any) {
		keys = append(keys, k.(K))
	})
	return keys
}

// Range calls f sequentially in ascending key order for all entries in the map.
func (pm *Map[K, V]) Range(f func(key K, value V)) {
	pm.root.forEach(func(k, v any) {
		f(k.(K), v.(V))
	})
}

func (node *mapNode) forEach(f func(key, value any)) {
	if node == nil {
		return
	}
	node.left.forEach(f)
	f(node.key, node.value.value)
	node.right.forEach(f)
}

// Get returns the map value associated with the specified key.
// The ok result indicates whether an entry was found in the map.
func (pm *Map[K, V]) Get(key K) (V, bool) {
	node := pm.root
	for node != nil {
		if key < node.key.(K) {
			node = node.left
		} else if node.key.(K) < key {
			node = node.right
		} else {
			return node.value.value.(V), true
		}
	}
	var zero V
	return zero, false
}

// SetAll updates the map with key/value pairs from the other map, overwriting existing keys.
// It is equivalent to calling Set for each entry in the other map but is more efficient.
func (pm *Map[K, V]) SetAll(other *Map[K, V]) {
	root := pm.root
	pm.root = union(root, other.root, pm.less, true)
	root.decref()
}

// Set updates the value associated with the specified key.
// If release is non-nil, it will be called with entry's key and value once the
// key is no longer contained in the map or any clone.
func (pm *Map[K, V]) Set(key K, value V, release func(key, value any)) {
	first := pm.root
	second := newNodeWithRef(key, value, release)
	pm.root = union(first, second, pm.less, true)
	first.decref()
	second.decref()
}

// union returns a new tree which is a union of first and second one.
// If overwrite is set to true, second one would override a value for any duplicate keys.
//
// union(first:-0, second:-0) (result:+1)
// Union borrows both subtrees without affecting their refcount and returns a
// new reference that the caller is expected to call decref.
func union(first, second *mapNode, less func(any, any) bool, overwrite bool) *mapNode {
	if first == nil {
		return second.incref()
	}
	if second == nil {
		return first.incref()
	}

	if first.weight < second.weight {
		second, first, overwrite = first, second, !overwrite
	}

	left, mid, right := split(second, first.key, less, false)
	var result *mapNode
	if overwrite && mid != nil {
		result = mid.shallowCloneWithRef()
	} else {
		result = first.shallowCloneWithRef()
	}
	result.weight = first.weight
	result.left = union(first.left, left, less, overwrite)
	result.right = union(first.right, right, less, overwrite)
	left.decref()
	mid.decref()
	right.decref()
	return result
}

// split the tree midway by the key into three different ones.
// Return three new trees: left with all nodes with smaller than key, mid with
// the node matching the key, right with all nodes larger than key.
// If there are no nodes in one of trees, return nil instead of it.
// If requireMid is set (such as during deletion), then all return arguments
// are nil if mid is not found.
//
// split(n:-0) (left:+1, mid:+1, right:+1)
// Split borrows n without affecting its refcount, and returns three
// new references that the caller is expected to call decref.
func split(n *mapNode, key any, less func(any, any) bool, requireMid bool) (left, mid, right *mapNode) {
	if n == nil {
		return nil, nil, nil
	}

	if less(n.key, key) {
		left, mid, right := split(n.right, key, less, requireMid)
		if requireMid && mid == nil {
			return nil, nil, nil
		}
		newN := n.shallowCloneWithRef()
		newN.left = n.left.incref()
		newN.right = left
		return newN, mid, right
	} else if less(key, n.key) {
		left, mid, right := split(n.left, key, less, requireMid)
		if requireMid && mid == nil {
			return nil, nil, nil
		}
		newN := n.shallowCloneWithRef()
		newN.left = right
		newN.right = n.right.incref()
		return left, mid, newN
	}
	mid = n.shallowCloneWithRef()
	return n.left.incref(), mid, n.right.incref()
}

// Delete deletes the value for a key.
//
// The result reports whether the key was present in the map.
func (pm *Map[K, V]) Delete(key K) bool {
	root := pm.root
	left, mid, right := split(root, key, pm.less, true)
	if mid == nil {
		return false
	}
	pm.root = merge(left, right)
	left.decref()
	mid.decref()
	right.decref()
	root.decref()
	return true
}

// merge two trees while preserving the weight invariant.
// All nodes in left must have smaller keys than any node in right.
//
// merge(left:-0, right:-0) (result:+1)
// Merge borrows its arguments without affecting their refcount
// and returns a new reference that the caller is expected to call decref.
func merge(left, right *mapNode) *mapNode {
	switch {
	case left == nil:
		return right.incref()
	case right == nil:
		return left.incref()
	case left.weight > right.weight:
		root := left.shallowCloneWithRef()
		root.left = left.left.incref()
		root.right = merge(left.right, right)
		return root
	default:
		root := right.shallowCloneWithRef()
		root.left = merge(left, right.left)
		root.right = right.right.incref()
		return root
	}
}