1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The persistent package defines various persistent data structures;
// that is, data structures that can be efficiently copied and modified
// in sublinear time.
package persistent
import (
"fmt"
"math/rand"
"strings"
"sync/atomic"
"cuelang.org/go/internal/golangorgx/gopls/util/constraints"
)
// Implementation details:
// * Each value is reference counted by nodes which hold it.
// * Each node is reference counted by its parent nodes.
// * Each map is considered a top-level parent node from reference counting perspective.
// * Each change does always effectively produce a new top level node.
//
// Functions which operate directly with nodes do have a notation in form of
// `foo(arg1:+n1, arg2:+n2) (ret1:+n3)`.
// Each argument is followed by a delta change to its reference counter.
// In case if no change is expected, the delta will be `-0`.
// Map is an associative mapping from keys to values.
//
// Maps can be Cloned in constant time.
// Get, Set, and Delete operations are done on average in logarithmic time.
// Maps can be merged (via SetAll) in O(m log(n/m)) time for maps of size n and m, where m < n.
//
// Values are reference counted, and a client-supplied release function
// is called when a value is no longer referenced by a map or any clone.
//
// Internally the implementation is based on a randomized persistent treap:
// https://en.wikipedia.org/wiki/Treap.
//
// The zero value is ready to use.
type Map[K constraints.Ordered, V any] struct {
// Map is a generic wrapper around a non-generic implementation to avoid a
// significant increase in the size of the executable.
root *mapNode
}
func (*Map[K, V]) less(l, r any) bool {
return l.(K) < r.(K)
}
func (m *Map[K, V]) String() string {
var buf strings.Builder
buf.WriteByte('{')
var sep string
m.Range(func(k K, v V) {
fmt.Fprintf(&buf, "%s%v: %v", sep, k, v)
sep = ", "
})
buf.WriteByte('}')
return buf.String()
}
type mapNode struct {
key any
value *refValue
weight uint64
refCount int32
left, right *mapNode
}
type refValue struct {
refCount int32
value any
release func(key, value any)
}
func newNodeWithRef[K constraints.Ordered, V any](key K, value V, release func(key, value any)) *mapNode {
return &mapNode{
key: key,
value: &refValue{
value: value,
release: release,
refCount: 1,
},
refCount: 1,
weight: rand.Uint64(),
}
}
func (node *mapNode) shallowCloneWithRef() *mapNode {
atomic.AddInt32(&node.value.refCount, 1)
return &mapNode{
key: node.key,
value: node.value,
weight: node.weight,
refCount: 1,
}
}
func (node *mapNode) incref() *mapNode {
if node != nil {
atomic.AddInt32(&node.refCount, 1)
}
return node
}
func (node *mapNode) decref() {
if node == nil {
return
}
if atomic.AddInt32(&node.refCount, -1) == 0 {
if atomic.AddInt32(&node.value.refCount, -1) == 0 {
if node.value.release != nil {
node.value.release(node.key, node.value.value)
}
node.value.value = nil
node.value.release = nil
}
node.left.decref()
node.right.decref()
}
}
// Clone returns a copy of the given map. It is a responsibility of the caller
// to Destroy it at later time.
func (pm *Map[K, V]) Clone() *Map[K, V] {
return &Map[K, V]{
root: pm.root.incref(),
}
}
// Destroy destroys the map.
//
// After Destroy, the Map should not be used again.
func (pm *Map[K, V]) Destroy() {
// The implementation of these two functions is the same,
// but their intent is different.
pm.Clear()
}
// Clear removes all entries from the map.
func (pm *Map[K, V]) Clear() {
pm.root.decref()
pm.root = nil
}
// Keys returns all keys present in the map.
func (pm *Map[K, V]) Keys() []K {
var keys []K
pm.root.forEach(func(k, _ any) {
keys = append(keys, k.(K))
})
return keys
}
// Range calls f sequentially in ascending key order for all entries in the map.
func (pm *Map[K, V]) Range(f func(key K, value V)) {
pm.root.forEach(func(k, v any) {
f(k.(K), v.(V))
})
}
func (node *mapNode) forEach(f func(key, value any)) {
if node == nil {
return
}
node.left.forEach(f)
f(node.key, node.value.value)
node.right.forEach(f)
}
// Get returns the map value associated with the specified key.
// The ok result indicates whether an entry was found in the map.
func (pm *Map[K, V]) Get(key K) (V, bool) {
node := pm.root
for node != nil {
if key < node.key.(K) {
node = node.left
} else if node.key.(K) < key {
node = node.right
} else {
return node.value.value.(V), true
}
}
var zero V
return zero, false
}
// SetAll updates the map with key/value pairs from the other map, overwriting existing keys.
// It is equivalent to calling Set for each entry in the other map but is more efficient.
func (pm *Map[K, V]) SetAll(other *Map[K, V]) {
root := pm.root
pm.root = union(root, other.root, pm.less, true)
root.decref()
}
// Set updates the value associated with the specified key.
// If release is non-nil, it will be called with entry's key and value once the
// key is no longer contained in the map or any clone.
func (pm *Map[K, V]) Set(key K, value V, release func(key, value any)) {
first := pm.root
second := newNodeWithRef(key, value, release)
pm.root = union(first, second, pm.less, true)
first.decref()
second.decref()
}
// union returns a new tree which is a union of first and second one.
// If overwrite is set to true, second one would override a value for any duplicate keys.
//
// union(first:-0, second:-0) (result:+1)
// Union borrows both subtrees without affecting their refcount and returns a
// new reference that the caller is expected to call decref.
func union(first, second *mapNode, less func(any, any) bool, overwrite bool) *mapNode {
if first == nil {
return second.incref()
}
if second == nil {
return first.incref()
}
if first.weight < second.weight {
second, first, overwrite = first, second, !overwrite
}
left, mid, right := split(second, first.key, less, false)
var result *mapNode
if overwrite && mid != nil {
result = mid.shallowCloneWithRef()
} else {
result = first.shallowCloneWithRef()
}
result.weight = first.weight
result.left = union(first.left, left, less, overwrite)
result.right = union(first.right, right, less, overwrite)
left.decref()
mid.decref()
right.decref()
return result
}
// split the tree midway by the key into three different ones.
// Return three new trees: left with all nodes with smaller than key, mid with
// the node matching the key, right with all nodes larger than key.
// If there are no nodes in one of trees, return nil instead of it.
// If requireMid is set (such as during deletion), then all return arguments
// are nil if mid is not found.
//
// split(n:-0) (left:+1, mid:+1, right:+1)
// Split borrows n without affecting its refcount, and returns three
// new references that the caller is expected to call decref.
func split(n *mapNode, key any, less func(any, any) bool, requireMid bool) (left, mid, right *mapNode) {
if n == nil {
return nil, nil, nil
}
if less(n.key, key) {
left, mid, right := split(n.right, key, less, requireMid)
if requireMid && mid == nil {
return nil, nil, nil
}
newN := n.shallowCloneWithRef()
newN.left = n.left.incref()
newN.right = left
return newN, mid, right
} else if less(key, n.key) {
left, mid, right := split(n.left, key, less, requireMid)
if requireMid && mid == nil {
return nil, nil, nil
}
newN := n.shallowCloneWithRef()
newN.left = right
newN.right = n.right.incref()
return left, mid, newN
}
mid = n.shallowCloneWithRef()
return n.left.incref(), mid, n.right.incref()
}
// Delete deletes the value for a key.
//
// The result reports whether the key was present in the map.
func (pm *Map[K, V]) Delete(key K) bool {
root := pm.root
left, mid, right := split(root, key, pm.less, true)
if mid == nil {
return false
}
pm.root = merge(left, right)
left.decref()
mid.decref()
right.decref()
root.decref()
return true
}
// merge two trees while preserving the weight invariant.
// All nodes in left must have smaller keys than any node in right.
//
// merge(left:-0, right:-0) (result:+1)
// Merge borrows its arguments without affecting their refcount
// and returns a new reference that the caller is expected to call decref.
func merge(left, right *mapNode) *mapNode {
switch {
case left == nil:
return right.incref()
case right == nil:
return left.incref()
case left.weight > right.weight:
root := left.shallowCloneWithRef()
root.left = left.left.incref()
root.right = merge(left.right, right)
return root
default:
root := right.shallowCloneWithRef()
root.left = merge(left, right.left)
root.right = right.right.incref()
return root
}
}
|