1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
// Copyright 2018 The CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package trim removes fields that may be inferred from another mixed in value
// that "dominates" it. For instance, a value that is merged in from a
// definition is considered to dominate a value from a regular struct that
// mixes in this definition. Values derived from constraints and comprehensions
// can also dominate other fields.
//
// A value A is considered to be implied by a value B if A subsumes the default
// value of B. For instance, if a definition defines a field `a: *1 | int` and
// mixed in with a struct that defines a field `a: 1 | 2`, then the latter can
// be removed because a definition field dominates a regular field and because
// the latter subsumes the default value of the former.
//
// Examples:
//
// light: [string]: {
// room: string
// brightnessOff: *0.0 | >=0 & <=100.0
// brightnessOn: *100.0 | >=0 & <=100.0
// }
//
// light: ceiling50: {
// room: "MasterBedroom"
// brightnessOff: 0.0 // this line
// brightnessOn: 100.0 // and this line will be removed
// }
//
// Results in:
//
// // Unmodified: light: [string]: { ... }
//
// light: ceiling50: {
// room: "MasterBedroom"
// }
package trim
import (
"io"
"os"
"cuelang.org/go/cue"
"cuelang.org/go/cue/ast"
"cuelang.org/go/cue/ast/astutil"
"cuelang.org/go/internal/core/adt"
"cuelang.org/go/internal/core/debug"
"cuelang.org/go/internal/core/subsume"
"cuelang.org/go/internal/core/walk"
"cuelang.org/go/internal/value"
)
// Config configures trim options.
type Config struct {
Trace bool
}
// Files trims fields in the given files that can be implied from other fields,
// as can be derived from the evaluated values in inst.
// Trimming is done on a best-effort basis and only when the removed field
// is clearly implied by another field, rather than equal sibling fields.
func Files(files []*ast.File, inst cue.InstanceOrValue, cfg *Config) error {
r, v := value.ToInternal(inst.Value())
t := &trimmer{
Config: *cfg,
ctx: adt.NewContext(r, v),
remove: map[ast.Node]bool{},
exclude: map[ast.Node]bool{},
debug: Debug,
w: os.Stderr,
}
// Mark certain expressions as off limits.
// TODO: We could alternatively ensure that comprehensions unconditionally
// resolve.
visitor := &walk.Visitor{
Before: func(n adt.Node) bool {
switch x := n.(type) {
case *adt.StructLit:
// Structs with comprehensions may never be removed.
for _, d := range x.Decls {
switch d.(type) {
case *adt.Comprehension:
t.markKeep(x)
}
}
}
return true
},
}
v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
visitor.Elem(c.Elem())
return true
})
d, _, _, pickedDefault := t.addDominators(nil, v, false)
t.findSubordinates(d, v, pickedDefault)
// Remove subordinate values from files.
for _, f := range files {
astutil.Apply(f, func(c astutil.Cursor) bool {
if f, ok := c.Node().(*ast.Field); ok && t.remove[f.Value] && !t.exclude[f.Value] {
c.Delete()
}
return true
}, nil)
if err := astutil.Sanitize(f); err != nil {
return err
}
}
return nil
}
type trimmer struct {
Config
ctx *adt.OpContext
remove map[ast.Node]bool
exclude map[ast.Node]bool
debug bool
indent int
w io.Writer
}
var Debug bool = false
func (t *trimmer) markRemove(c adt.Conjunct) {
if src := c.Elem().Source(); src != nil {
t.remove[src] = true
if t.debug {
t.logf("removing %s", debug.NodeString(t.ctx, c.Elem(), nil))
}
}
}
func (t *trimmer) markKeep(x adt.Expr) {
if src := x.Source(); src != nil {
t.exclude[src] = true
if t.debug {
t.logf("keeping")
}
}
}
const dominatorNode = adt.ComprehensionSpan | adt.DefinitionSpan | adt.ConstraintSpan
// isDominator reports whether a node can remove other nodes.
func isDominator(c adt.Conjunct) (ok, mayRemove bool) {
if !c.CloseInfo.IsInOneOf(dominatorNode) {
return false, false
}
switch f := c.Field().(type) {
case *adt.Field: // bulk constraints handled elsewhere.
return true, f.ArcType == adt.ArcMember
}
return true, true
}
// Removable reports whether a non-dominator conjunct can be removed. This is
// not the case if it has pattern constraints that could turn into dominator
// nodes.
func removable(c adt.Conjunct, v *adt.Vertex) bool {
return c.CloseInfo.FieldTypes&(adt.HasAdditional|adt.HasPattern) == 0
}
// Roots of constraints are not allowed to strip conjuncts by
// themselves as it will eliminate the reason for the trigger.
func (t *trimmer) allowRemove(v *adt.Vertex) (allow bool) {
v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
_, allowRemove := isDominator(c)
loc := c.CloseInfo.Location() != c.Elem()
isSpan := c.CloseInfo.RootSpanType() != adt.ConstraintSpan
if allowRemove && (loc || isSpan) {
allow = true
return false
}
return true
})
return allow
}
// A parent may be removed if there is not a `no` and there is at least one
// `yes`. A `yes` is proves that there is at least one node that is not a
// dominator node and that we are not removing nodes from a declaration of a
// dominator itself.
const (
no = 1 << iota
maybe
yes
)
// addDominators injects dominator values from v into d. If no default has
// been selected from dominators so far, the values are erased. Otherwise,
// both default and new values are merged.
//
// Erasing the previous values when there has been no default so far allows
// interpolations, for instance, to be evaluated in the new context and
// eliminated.
//
// Values are kept when there has been a default (current or ancestor) because
// the current value may contain information that caused that default to be
// selected and thus erasing it would cause that information to be lost.
//
// TODO:
// In principle, information only needs to be kept for discriminator values, or
// any value that was instrumental in selecting the default. This is currently
// hard to do, however, so we just fall back to a stricter mode in the presence
// of defaults.
func (t *trimmer) addDominators(d, v *adt.Vertex, hasDisjunction bool) (doms *adt.Vertex, ambiguous, hasSubs, strict bool) {
strict = hasDisjunction
doms = &adt.Vertex{
Parent: v.Parent,
Label: v.Label,
}
if d != nil && hasDisjunction {
doms.InsertConjunctsFrom(d)
}
hasDoms := false
v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
isDom, _ := isDominator(c)
switch {
case isDom:
doms.AddConjunct(c)
default:
if r, ok := c.Elem().(adt.Resolver); ok {
x, _ := t.ctx.Resolve(c, r)
// Even if this is not a dominator now, descendants will be.
if x != nil && x.Label.IsDef() {
x.VisitLeafConjuncts(func(c adt.Conjunct) bool {
doms.AddConjunct(c)
return true
})
return false
}
}
hasSubs = true
}
return true
})
doms.Finalize(t.ctx)
switch x := doms.Value().(type) {
case *adt.Disjunction:
switch x.NumDefaults {
case 1:
strict = true
default:
ambiguous = true
}
}
if doms = doms.Default(); doms.IsErr() {
ambiguous = true
}
_ = hasDoms
return doms, hasSubs, ambiguous, strict || ambiguous
}
func (t *trimmer) findSubordinates(doms, v *adt.Vertex, hasDisjunction bool) (result int) {
defer un(t.trace(v))
defer func() {
if result == no {
v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
t.markKeep(c.Expr())
return true
})
}
}()
doms, hasSubs, ambiguous, pickedDefault := t.addDominators(doms, v, hasDisjunction)
if ambiguous {
return no
}
// TODO(structure sharing): do not descend into vertices whose parent is not
// equal to the parent. This is not relevant at this time, but may be so in
// the future.
if len(v.Arcs) > 0 {
var match int
for _, a := range v.Arcs {
d := doms.Lookup(a.Label)
match |= t.findSubordinates(d, a, pickedDefault)
}
// This also skips embedded scalars if not all fields are removed. In
// this case we need to preserve the scalar to keep the type of the
// struct intact, which might as well be done by not removing the scalar
// type.
if match&yes == 0 || match&no != 0 {
return match
}
}
if !t.allowRemove(v) {
return no
}
switch v.BaseValue.(type) {
case *adt.StructMarker, *adt.ListMarker:
// Rely on previous processing of the Arcs and the fact that we take the
// default value to check dominator subsumption, meaning that we don't
// have to check additional optional constraints to pass subsumption.
default:
if !hasSubs {
return maybe
}
// This should normally not be necessary, as subsume should catch this.
// But as we already take the default value for doms, it doesn't hurt to
// do it.
v = v.Default()
// This is not necessary, but seems like it may result in more
// user-friendly semantics.
if v.IsErr() {
return no
}
// TODO: since we take v, instead of the unification of subordinate
// values, it should suffice to take equality here:
// doms ⊑ subs ==> doms == subs&doms
if err := subsume.Value(t.ctx, v, doms); err != nil {
return no
}
}
v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
_, allowRemove := isDominator(c)
if !allowRemove && removable(c, v) {
t.markRemove(c)
}
return true
})
return yes
}
|