1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
// Copyright 2020 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package literal
import (
"cuelang.org/go/cue/errors"
"cuelang.org/go/cue/token"
"github.com/cockroachdb/apd/v3"
)
// We avoid cuelang.org/go/internal.Context as that would be an import cycle.
var baseContext apd.Context
func init() {
baseContext = apd.BaseContext
baseContext.Precision = 34
}
// NumInfo contains information about a parsed numbers.
//
// Reusing a NumInfo across parses may avoid memory allocations.
type NumInfo struct {
pos token.Pos
src string
p int
ch byte
buf []byte
mul Multiplier
base byte
neg bool
UseSep bool
isFloat bool
err error
}
// String returns a canonical string representation of the number so that
// it can be parsed with math.Float.Parse.
func (p *NumInfo) String() string {
if len(p.buf) > 0 && p.base == 10 && p.mul == 0 {
return string(p.buf)
}
var d apd.Decimal
_ = p.decimal(&d)
return d.String()
}
type decimal = apd.Decimal
// Decimal is for internal use.
func (p *NumInfo) Decimal(v *decimal) error {
return p.decimal(v)
}
func (p *NumInfo) decimal(v *apd.Decimal) error {
if p.base != 10 {
_, _, _ = v.SetString("0")
b := p.buf
if p.buf[0] == '-' {
v.Negative = p.neg
b = p.buf[1:]
}
v.Coeff.SetString(string(b), int(p.base))
return nil
}
_ = v.UnmarshalText(p.buf)
if p.mul != 0 {
_, _ = baseContext.Mul(v, v, mulToRat[p.mul])
cond, _ := baseContext.RoundToIntegralExact(v, v)
if cond.Inexact() {
return p.errorf("number cannot be represented as int")
}
}
return nil
}
// Multiplier reports which multiplier was used in an integral number.
func (p *NumInfo) Multiplier() Multiplier {
return p.mul
}
// IsInt reports whether the number is an integral number.
func (p *NumInfo) IsInt() bool {
return !p.isFloat
}
// ParseNum parses s and populates NumInfo with the result.
func ParseNum(s string, n *NumInfo) error {
*n = NumInfo{pos: n.pos, src: s, buf: n.buf[:0]}
if !n.next() {
return n.errorf("invalid number %q", s)
}
switch n.ch {
case '-':
n.neg = true
n.buf = append(n.buf, '-')
n.next()
case '+':
n.next()
}
seenDecimalPoint := false
if n.ch == '.' {
n.next()
seenDecimalPoint = true
}
err := n.scanNumber(seenDecimalPoint)
if err != nil {
return err
}
if n.err != nil {
return n.err
}
if n.p < len(n.src) {
return n.errorf("invalid number %q", s)
}
if len(n.buf) == 0 {
n.buf = append(n.buf, '0')
}
return nil
}
func (p *NumInfo) errorf(format string, args ...interface{}) error {
return errors.Newf(p.pos, format, args...)
}
// A Multiplier indicates a multiplier indicator used in the literal.
type Multiplier byte
const (
mul1 Multiplier = 1 + iota
mul2
mul3
mul4
mul5
mul6
mul7
mul8
mulBin = 0x10
mulDec = 0x20
K = mulDec | mul1
M = mulDec | mul2
G = mulDec | mul3
T = mulDec | mul4
P = mulDec | mul5
E = mulDec | mul6
Z = mulDec | mul7
Y = mulDec | mul8
Ki = mulBin | mul1
Mi = mulBin | mul2
Gi = mulBin | mul3
Ti = mulBin | mul4
Pi = mulBin | mul5
Ei = mulBin | mul6
Zi = mulBin | mul7
Yi = mulBin | mul8
)
func (p *NumInfo) next() bool {
if p.p >= len(p.src) {
p.ch = 0
return false
}
p.ch = p.src[p.p]
p.p++
if p.ch == '.' {
if len(p.buf) == 0 {
p.buf = append(p.buf, '0')
}
p.buf = append(p.buf, '.')
}
return true
}
func (p *NumInfo) digitVal(ch byte) (d int) {
switch {
case '0' <= ch && ch <= '9':
d = int(ch - '0')
case ch == '_':
p.UseSep = true
return 0
case 'a' <= ch && ch <= 'f':
d = int(ch - 'a' + 10)
case 'A' <= ch && ch <= 'F':
d = int(ch - 'A' + 10)
default:
return 16 // larger than any legal digit val
}
return d
}
func (p *NumInfo) scanMantissa(base int) bool {
hasDigit := false
var last byte
for p.digitVal(p.ch) < base {
if p.ch != '_' {
p.buf = append(p.buf, p.ch)
hasDigit = true
}
last = p.ch
p.next()
}
if last == '_' {
p.err = p.errorf("illegal '_' in number")
}
return hasDigit
}
func (p *NumInfo) scanNumber(seenDecimalPoint bool) error {
p.base = 10
if seenDecimalPoint {
p.isFloat = true
if !p.scanMantissa(10) {
return p.errorf("illegal fraction %q", p.src)
}
goto exponent
}
if p.ch == '0' {
// int or float
p.next()
switch p.ch {
case 'x', 'X':
p.base = 16
// hexadecimal int
p.next()
if !p.scanMantissa(16) {
// only scanned "0x" or "0X"
return p.errorf("illegal hexadecimal number %q", p.src)
}
case 'b':
p.base = 2
// binary int
p.next()
if !p.scanMantissa(2) {
// only scanned "0b"
return p.errorf("illegal binary number %q", p.src)
}
case 'o':
p.base = 8
// octal int
p.next()
if !p.scanMantissa(8) {
// only scanned "0o"
return p.errorf("illegal octal number %q", p.src)
}
default:
// int (base 8 or 10) or float
p.scanMantissa(8)
if p.ch == '8' || p.ch == '9' {
p.scanMantissa(10)
if p.ch != '.' && p.ch != 'e' && p.ch != 'E' {
return p.errorf("illegal integer number %q", p.src)
}
}
switch p.ch {
case 'e', 'E':
if len(p.buf) == 0 {
p.buf = append(p.buf, '0')
}
fallthrough
case '.':
goto fraction
}
if len(p.buf) > 0 {
p.base = 8
}
}
goto exit
}
// decimal int or float
if !p.scanMantissa(10) {
return p.errorf("illegal number start %q", p.src)
}
fraction:
if p.ch == '.' {
p.isFloat = true
p.next()
p.scanMantissa(10)
}
exponent:
switch p.ch {
case 'K', 'M', 'G', 'T', 'P':
p.mul = charToMul[p.ch]
p.next()
if p.ch == 'i' {
p.mul |= mulBin
p.next()
} else {
p.mul |= mulDec
}
var v apd.Decimal
p.isFloat = false
return p.decimal(&v)
case 'e', 'E':
p.isFloat = true
p.next()
p.buf = append(p.buf, 'e')
if p.ch == '-' || p.ch == '+' {
p.buf = append(p.buf, p.ch)
p.next()
}
if !p.scanMantissa(10) {
return p.errorf("illegal exponent %q", p.src)
}
}
exit:
return nil
}
var charToMul = map[byte]Multiplier{
'K': mul1,
'M': mul2,
'G': mul3,
'T': mul4,
'P': mul5,
'E': mul6,
'Z': mul7,
'Y': mul8,
}
var mulToRat = map[Multiplier]*apd.Decimal{}
func init() {
d := apd.New(1, 0)
b := apd.New(1, 0)
dm := apd.New(1000, 0)
bm := apd.New(1024, 0)
c := apd.BaseContext
for i := Multiplier(1); int(i) < len(charToMul); i++ {
// TODO: may we write to one of the sources?
var bn, dn apd.Decimal
_, _ = c.Mul(&dn, d, dm)
d = &dn
_, _ = c.Mul(&bn, b, bm)
b = &bn
mulToRat[mulDec|i] = d
mulToRat[mulBin|i] = b
}
}
|