File: types.go

package info (click to toggle)
golang-github-cue-lang-cue 0.14.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,644 kB
  • sloc: makefile: 20; sh: 15
file content (2461 lines) | stat: -rw-r--r-- 65,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
// Copyright 2018 The CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package cue

import (
	"bytes"
	"encoding/json"
	"fmt"
	"io"
	"math"
	"math/big"
	"slices"
	"strings"

	"github.com/cockroachdb/apd/v3"

	"cuelang.org/go/cue/ast"
	"cuelang.org/go/cue/build"
	"cuelang.org/go/cue/errors"
	"cuelang.org/go/cue/token"
	"cuelang.org/go/internal"
	"cuelang.org/go/internal/core/adt"
	"cuelang.org/go/internal/core/compile"
	"cuelang.org/go/internal/core/convert"
	"cuelang.org/go/internal/core/export"
	"cuelang.org/go/internal/core/runtime"
	"cuelang.org/go/internal/core/subsume"
	internaljson "cuelang.org/go/internal/encoding/json"
	"cuelang.org/go/internal/types"
)

// Kind determines the underlying type of a Value.
type Kind = adt.Kind

const (
	// BottomKind represents the bottom value.
	BottomKind Kind = adt.BottomKind

	// NullKind indicates a null value.
	NullKind Kind = adt.NullKind

	// BoolKind indicates a boolean value.
	BoolKind Kind = adt.BoolKind

	// IntKind represents an integral number.
	IntKind Kind = adt.IntKind

	// FloatKind represents a decimal float point number that cannot be
	// converted to an integer. The underlying number may still be integral,
	// but resulting from an operation that enforces the float type.
	FloatKind Kind = adt.FloatKind

	// StringKind indicates any kind of string.
	StringKind Kind = adt.StringKind

	// BytesKind is a blob of data.
	BytesKind Kind = adt.BytesKind

	// StructKind is a kev-value map.
	StructKind Kind = adt.StructKind

	// ListKind indicates a list of values.
	ListKind Kind = adt.ListKind

	// _numberKind is used as a implementation detail inside
	// Kind.String to indicate NumberKind.

	// NumberKind represents any kind of number.
	NumberKind Kind = adt.NumberKind

	// TopKind represents the top value.
	TopKind Kind = adt.TopKind
)

// An structValue represents a JSON object.
//
// TODO: remove
type structValue struct {
	ctx  *adt.OpContext
	v    Value
	obj  *adt.Vertex
	arcs []*adt.Vertex
}

type hiddenStructValue = structValue

// Len reports the number of fields in this struct.
func (o *hiddenStructValue) Len() int {
	if o.obj == nil {
		return 0
	}
	return len(o.arcs)
}

// At reports the key and value of the ith field, i < o.Len().
func (o *hiddenStructValue) At(i int) (key string, v Value) {
	arc := o.arcs[i]
	return o.v.idx.LabelStr(arc.Label), newChildValue(o, i)
}

func (o *hiddenStructValue) at(i int) *adt.Vertex {
	return o.arcs[i]
}

// Lookup reports the field for the given key. The returned [Value] is invalid
// if it does not exist.
func (o *hiddenStructValue) Lookup(key string) Value {
	f := o.v.idx.StrLabel(key)
	i := 0
	len := o.Len()
	for ; i < len; i++ {
		if o.arcs[i].Label == f {
			break
		}
	}
	if i == len {
		x := mkErr(o.obj, 0, "field not found: %v", key)
		x.NotExists = true
		// TODO: more specifically we should test whether the values that
		// are addressable from the root of the configuration can support the
		// looked up value. This will avoid false positives such as when
		// an open literal struct is passed to a builtin.
		if o.obj.Accept(o.ctx, f) {
			x.Code = adt.IncompleteError
		}
		return newErrValue(o.v, x)
	}
	return newChildValue(o, i)
}

// appendJSON appends a valid JSON encoding or reports an error if any of the
// fields is invalid.
func (o *structValue) appendJSON(b []byte) ([]byte, error) {
	b = append(b, '{')
	n := o.Len()
	for i := range n {
		k, v := o.At(i)
		// Do not use json.Marshal as it escapes HTML.
		s, err := internaljson.Marshal(k)
		if err != nil {
			return nil, err
		}
		b = append(b, s...)
		b = append(b, ':')
		b, err = v.appendJSON(o.ctx, b)
		if err != nil {
			return nil, err
		}
		if i < n-1 {
			b = append(b, ',')
		}
	}
	b = append(b, '}')
	return b, nil
}

var _ errors.Error = &marshalError{}

type marshalError struct {
	err errors.Error
	b   *adt.Bottom
}

func toMarshalErr(v Value, b *adt.Bottom) error {
	return &marshalError{v.toErr(b), b}
}

func marshalErrf(v Value, src adt.Node, code adt.ErrorCode, msg string, args ...interface{}) error {
	arguments := append([]interface{}{code, msg}, args...)
	b := mkErr(src, arguments...)
	return toMarshalErr(v, b)
}

func (e *marshalError) Error() string {
	return fmt.Sprintf("cue: marshal error: %v", e.err)
}

func (e *marshalError) Bottom() *adt.Bottom          { return e.b }
func (e *marshalError) Path() []string               { return e.err.Path() }
func (e *marshalError) Msg() (string, []interface{}) { return e.err.Msg() }
func (e *marshalError) Position() token.Pos          { return e.err.Position() }
func (e *marshalError) InputPositions() []token.Pos {
	return e.err.InputPositions()
}

func unwrapJSONError(err error) errors.Error {
	switch x := err.(type) {
	case *json.MarshalerError:
		return unwrapJSONError(x.Err)
	case *marshalError:
		return x
	case errors.Error:
		return &marshalError{x, nil}
	default:
		return &marshalError{errors.Wrapf(err, token.NoPos, "json error"), nil}
	}
}

// An Iterator iterates over values.
type Iterator struct {
	val     Value
	idx     *runtime.Runtime
	ctx     *adt.OpContext
	arcs    []*adt.Vertex
	p       int
	cur     Value
	f       adt.Feature
	arcType adt.ArcType
}

type hiddenIterator = Iterator

// Next advances the iterator to the next value and reports whether there was any.
// It must be called before the first call to [Iterator.Value] or [Iterator.Selector].
func (i *Iterator) Next() bool {
	if i.p >= len(i.arcs) {
		i.cur = Value{}
		return false
	}
	arc := i.arcs[i.p]
	arc.Finalize(i.ctx)
	p := linkParent(i.val.parent_, i.val.v, arc)
	i.f = arc.Label
	i.arcType = arc.ArcType
	i.cur = makeValue(i.val.idx, arc, p)
	i.p++
	return true
}

// Value returns the current value in the list.
// It will panic if [Iterator.Next] advanced past the last entry.
func (i *Iterator) Value() Value {
	return i.cur
}

// Selector reports the field label of this iteration.
func (i *Iterator) Selector() Selector {
	sel := featureToSel(i.f, i.idx)
	// Only call wrapConstraint if there is any constraint type to wrap with.
	if ctype := fromArcType(i.arcType); ctype != 0 {
		sel = wrapConstraint(sel, ctype)
	}
	return sel
}

// Label reports the label of the value if i iterates over struct fields and ""
// otherwise.
//
// Deprecated: use [Iterator.Selector] with methods like
// [Selector.Unquoted] or [Selector.String] depending on whether or not
// you are only dealing with regular fields, whose labels are always [StringLabel].
// Note that this will give more accurate string representations.
func (i *hiddenIterator) Label() string {
	if i.f == 0 {
		return ""
	}
	return i.idx.LabelStr(i.f)
}

// IsOptional reports if a field is optional.
func (i *Iterator) IsOptional() bool {
	return i.arcType == adt.ArcOptional
}

// FieldType reports the type of the field.
func (i *Iterator) FieldType() SelectorType {
	return featureToSelType(i.f, i.arcType)
}

// listAppendJSON iterates over the list and generates JSON output. HasNext
// will return false after this operation.
func listAppendJSON(b []byte, l *Iterator) ([]byte, error) {
	b = append(b, '[')
	if l.Next() {
		for i := 0; ; i++ {
			var err error
			b, err = l.Value().appendJSON(l.ctx, b)
			if err != nil {
				return nil, err
			}
			if !l.Next() {
				break
			}
			b = append(b, ',')
		}
	}
	b = append(b, ']')
	return b, nil
}

func (v Value) getNum(k adt.Kind) (*adt.Num, errors.Error) {
	v, _ = v.Default()
	ctx := v.ctx()
	if err := v.checkKind(ctx, k); err != nil {
		return nil, v.toErr(err)
	}
	n, _ := v.eval(ctx).(*adt.Num)
	return n, nil
}

// MantExp breaks x into its mantissa and exponent components and returns the
// exponent. If a non-nil mant argument is provided its value is set to the
// mantissa of x. The components satisfy x == mant × 10**exp. It returns an
// error if v is not a number.
//
// The components are not normalized. For instance, 2.00 is represented mant ==
// 200 and exp == -2. Calling MantExp with a nil argument is an efficient way to
// get the exponent of the receiver.
func (v Value) MantExp(mant *big.Int) (exp int, err error) {
	n, err := v.getNum(adt.NumberKind)
	if err != nil {
		return 0, err
	}
	if n.X.Form != 0 {
		return 0, ErrInfinite
	}
	if mant != nil {
		mant.Set(n.X.Coeff.MathBigInt())
		if n.X.Negative {
			mant.Neg(mant)
		}
	}
	return int(n.X.Exponent), nil
}

// Decimal is for internal use only. The Decimal type that is returned is
// subject to change.
func (v hiddenValue) Decimal() (d *internal.Decimal, err error) {
	n, err := v.getNum(adt.NumberKind)
	if err != nil {
		return nil, err
	}
	return &n.X, nil
}

// AppendInt appends the string representation of x in the given base to buf and
// returns the extended buffer, or an error if the underlying number was not
// an integer.
func (v Value) AppendInt(buf []byte, base int) ([]byte, error) {
	i, err := v.Int(nil)
	if err != nil {
		return nil, err
	}
	return i.Append(buf, base), nil
}

// AppendFloat appends to buf the string form of the floating-point number x.
// It returns an error if v is not a number.
func (v Value) AppendFloat(buf []byte, fmt byte, prec int) ([]byte, error) {
	n, err := v.getNum(adt.NumberKind)
	if err != nil {
		return nil, err
	}
	ctx := internal.BaseContext
	nd := int(apd.NumDigits(&n.X.Coeff)) + int(n.X.Exponent)
	if n.X.Form == apd.Infinite {
		if n.X.Negative {
			buf = append(buf, '-')
		}
		return append(buf, string('∞')...), nil
	}
	if fmt == 'f' && nd > 0 {
		ctx = ctx.WithPrecision(uint32(nd + prec))
	} else {
		ctx = ctx.WithPrecision(uint32(prec))
	}
	var d apd.Decimal
	ctx.Round(&d, &n.X)
	return d.Append(buf, fmt), nil
}

var (
	// ErrBelow indicates that a value was rounded down in a conversion.
	ErrBelow = errors.New("value was rounded down")

	// ErrAbove indicates that a value was rounded up in a conversion.
	ErrAbove = errors.New("value was rounded up")

	// ErrInfinite indicates that a value is infinite.
	ErrInfinite = errors.New("infinite")
)

// Int converts the underlying integral number to an big.Int. It reports an
// error if the underlying value is not an integer type. If a non-nil *Int
// argument z is provided, Int stores the result in z instead of allocating a
// new Int.
func (v Value) Int(z *big.Int) (*big.Int, error) {
	n, err := v.getNum(adt.IntKind)
	if err != nil {
		return nil, err
	}
	if z == nil {
		z = &big.Int{}
	}
	if n.X.Exponent != 0 {
		panic("cue: exponent should always be nil for integer types")
	}
	z.Set(n.X.Coeff.MathBigInt())
	if n.X.Negative {
		z.Neg(z)
	}
	return z, nil
}

// Int64 converts the underlying integral number to int64. It reports an
// error if the underlying value is not an integer type or cannot be represented
// as an int64. The result is (math.MinInt64, ErrAbove) for x < math.MinInt64,
// and (math.MaxInt64, ErrBelow) for x > math.MaxInt64.
func (v Value) Int64() (int64, error) {
	n, err := v.getNum(adt.IntKind)
	if err != nil {
		return 0, err
	}
	if !n.X.Coeff.IsInt64() {
		if n.X.Negative {
			return math.MinInt64, ErrAbove
		}
		return math.MaxInt64, ErrBelow
	}
	i := n.X.Coeff.Int64()
	if n.X.Negative {
		i = -i
	}
	return i, nil
}

// Uint64 converts the underlying integral number to uint64. It reports an
// error if the underlying value is not an integer type or cannot be represented
// as a uint64. The result is (0, ErrAbove) for x < 0, and
// (math.MaxUint64, ErrBelow) for x > math.MaxUint64.
func (v Value) Uint64() (uint64, error) {
	n, err := v.getNum(adt.IntKind)
	if err != nil {
		return 0, err
	}
	if n.X.Negative {
		return 0, ErrAbove
	}
	if !n.X.Coeff.IsUint64() {
		return math.MaxUint64, ErrBelow
	}
	i := n.X.Coeff.Uint64()
	return i, nil
}

var (
	smallestPosFloat64 *apd.Decimal
	smallestNegFloat64 *apd.Decimal
	maxPosFloat64      *apd.Decimal
	maxNegFloat64      *apd.Decimal
)

func init() {
	const (
		// math.SmallestNonzeroFloat64: 1 / 2**(1023 - 1 + 52)
		smallest = "4.940656458412465441765687928682213723651e-324"
		// math.MaxFloat64: 2**1023 * (2**53 - 1) / 2**52
		max = "1.797693134862315708145274237317043567981e+308"
	)
	ctx := internal.BaseContext.WithPrecision(40)

	var err error
	smallestPosFloat64, _, err = ctx.NewFromString(smallest)
	if err != nil {
		panic(err)
	}
	smallestNegFloat64, _, err = ctx.NewFromString("-" + smallest)
	if err != nil {
		panic(err)
	}
	maxPosFloat64, _, err = ctx.NewFromString(max)
	if err != nil {
		panic(err)
	}
	maxNegFloat64, _, err = ctx.NewFromString("-" + max)
	if err != nil {
		panic(err)
	}
}

// Float returns a big.Float nearest to x. It reports an error if v is
// not a number. If a non-nil *Float argument f is provided, Float stores the result in f
// instead of allocating a new Float.
func (v Value) Float(f *big.Float) (*big.Float, error) {
	var err error

	n, err := v.getNum(adt.NumberKind)
	if err != nil {
		return nil, err
	}
	if f == nil {
		f = &big.Float{}
	}

	f, _, err = f.Parse(n.X.String(), 0)
	return f, err
}

// Float64 returns the float64 value nearest to x. It reports an error if v is
// not a number. If x is too small to be represented by a float64 (|x| <
// math.SmallestNonzeroFloat64), the result is (0, ErrBelow) or (-0, ErrAbove),
// respectively, depending on the sign of x. If x is too large to be represented
// by a float64 (|x| > math.MaxFloat64), the result is (+Inf, ErrAbove) or
// (-Inf, ErrBelow), depending on the sign of x.
func (v Value) Float64() (float64, error) {
	n, err := v.getNum(adt.NumberKind)
	if err != nil {
		return 0, err
	}
	if n.X.IsZero() {
		return 0.0, nil
	}
	if n.X.Negative {
		if n.X.Cmp(smallestNegFloat64) == 1 {
			return -0, ErrAbove
		}
		if n.X.Cmp(maxNegFloat64) == -1 {
			return math.Inf(-1), ErrBelow
		}
	} else {
		if n.X.Cmp(smallestPosFloat64) == -1 {
			return 0, ErrBelow
		}
		if n.X.Cmp(maxPosFloat64) == 1 {
			return math.Inf(1), ErrAbove
		}
	}
	f, _ := n.X.Float64()
	return f, nil
}

// Value holds any value, which may be a Boolean, Error, List, Null, Number,
// Struct, or String.
type Value struct {
	idx *runtime.Runtime
	v   *adt.Vertex
	// Parent keeps track of the parent if the value corresponding to v.Parent
	// differs, recursively.
	parent_ *parent
}

// parent is a distinct type from Value to ensure more type safety: Value
// is typically used by value, so taking a pointer to it has a high risk
// or globbering the contents.
type parent struct {
	v *adt.Vertex
	p *parent
}

func (v Value) parent() Value {
	switch {
	case v.v == nil:
		return Value{}
	case v.parent_ != nil:
		return Value{v.idx, v.parent_.v, v.parent_.p}
	default:
		return Value{v.idx, v.v.Parent, nil}
	}
}

type valueScope Value

func (v valueScope) Vertex() *adt.Vertex { return v.v }
func (v valueScope) Parent() compile.Scope {
	p := Value(v).parent()
	if p.v == nil {
		return nil
	}
	return valueScope(p)
}

type hiddenValue = Value

// Core is for internal use only.
func (v hiddenValue) Core(x *types.Value) {
	x.V = v.v
	x.R = v.idx
}

func newErrValue(v Value, b *adt.Bottom) Value {
	node := &adt.Vertex{BaseValue: b}
	if v.v != nil {
		node.Label = v.v.Label
		node.Parent = v.v.Parent
	}
	node.ForceDone()
	node.AddConjunct(adt.MakeRootConjunct(nil, b))
	return makeChildValue(v.parent(), node)
}

func newVertexRoot(idx *runtime.Runtime, ctx *adt.OpContext, x *adt.Vertex) Value {
	if ctx != nil {
		// This is indicative of an zero Value. In some cases this is called
		// with an error value.
		x.Finalize(ctx)
	} else {
		x.ForceDone()
	}
	return makeValue(idx, x, nil)
}

func newValueRoot(idx *runtime.Runtime, ctx *adt.OpContext, x adt.Expr) Value {
	if n, ok := x.(*adt.Vertex); ok {
		return newVertexRoot(idx, ctx, n)
	}
	node := &adt.Vertex{}
	node.AddConjunct(adt.MakeRootConjunct(nil, x))
	return newVertexRoot(idx, ctx, node)
}

func newChildValue(o *structValue, i int) Value {
	arc := o.at(i)
	return makeValue(o.v.idx, arc, linkParent(o.v.parent_, o.v.v, arc))
}

// Dereference reports the value v refers to if v is a reference or v itself
// otherwise.
func Dereference(v Value) Value {
	n := v.v
	if n == nil {
		return v
	}

	c, count := n.SingleConjunct()
	if count != 1 {
		return v
	}

	env, expr := c.EnvExpr()

	// TODO: consider supporting unwrapping of structs or comprehensions around
	// a single embedded reference.
	r, _ := expr.(adt.Resolver)
	if r == nil {
		return v
	}

	c = adt.MakeRootConjunct(env, expr)

	ctx := v.ctx()
	n, b := ctx.Resolve(c, r)
	if b != nil {
		return newErrValue(v, b)
	}
	n.Finalize(ctx)
	// NOTE: due to structure sharing, the path of the referred node may end
	// up different from the one explicitly pointed to. The value will be the
	// same, but the scope may differ.
	// TODO(structureshare): see if we can construct the original path. This
	// only has to be done if structures are being shared.
	return makeValue(v.idx, n, nil)
}

func makeValue(idx *runtime.Runtime, v *adt.Vertex, p *parent) Value {
	if v.Status() == 0 || v.BaseValue == nil {
		panic(fmt.Sprintf("not properly initialized (state: %v, value: %T)",
			v.Status(), v.BaseValue))
	}
	return Value{idx, v, p}
}

// makeChildValue makes a new value, of which p is the parent, and links the
// parent pointer to p if necessary.
func makeChildValue(p Value, arc *adt.Vertex) Value {
	return makeValue(p.idx, arc, linkParent(p.parent_, p.v, arc))
}

// linkParent creates the parent struct for an arc, if necessary.
//
// The parent struct is necessary if the parent struct also has a parent struct,
// or if arc is (structurally) shared and does not have node as a parent.
func linkParent(p *parent, node, arc *adt.Vertex) *parent {
	if p == nil && node == arc.Parent {
		return nil
	}
	return &parent{node, p}
}

func remakeValue(base Value, env *adt.Environment, v adt.Expr) Value {
	// TODO: right now this is necessary because disjunctions do not have
	// populated conjuncts.
	if v, ok := v.(*adt.Vertex); ok && !v.IsUnprocessed() {
		return Value{base.idx, v, nil}
	}
	n := &adt.Vertex{Label: base.v.Label}
	n.AddConjunct(adt.MakeRootConjunct(env, v))
	n = manifest(base.ctx(), n)
	n.Parent = base.v.Parent
	return makeChildValue(base.parent(), n)
}

func remakeFinal(base Value, v adt.Value) Value {
	n := &adt.Vertex{Parent: base.v.Parent, Label: base.v.Label, BaseValue: v}
	n.ForceDone()
	return makeChildValue(base.parent(), n)
}

func (v Value) ctx() *adt.OpContext {
	return newContext(v.idx)
}

// Eval resolves the references of a value and returns the result.
// This method is not necessary to obtain concrete values.
func (v Value) Eval() Value {
	if v.v == nil {
		return v
	}
	x := v.v
	// x = eval.FinalizeValue(v.idx.Runtime, v.v)
	// x.Finalize(v.ctx())
	x = x.ToDataSingle()
	return makeValue(v.idx, x, v.parent_)
	// return remakeValue(v, nil, ctx.value(x))
}

// Default reports the default value and whether it existed. It returns the
// normal value if there is no default.
func (v Value) Default() (Value, bool) {
	if v.v == nil {
		return v, false
	}

	x := v.v.DerefValue()
	d := x.Default()
	isDefault := d != x
	if d == v.v {
		return v, false
	}
	return makeValue(v.idx, d, v.parent_), isDefault
}

// Label reports he label used to obtain this value from the enclosing struct.
//
// TODO: get rid of this somehow. Probably by including a FieldInfo struct
// or the like.
func (v hiddenValue) Label() (string, bool) {
	if v.v == nil || v.v.Label == 0 {
		return "", false
	}
	return v.idx.LabelStr(v.v.Label), true
}

// Kind returns the kind of value. It returns BottomKind for atomic values that
// are not concrete. For instance, it will return BottomKind for the bounds
// >=0.
func (v Value) Kind() Kind {
	if v.v == nil {
		return BottomKind
	}
	w := v.v.DerefValue()
	c := w.BaseValue
	if !w.IsConcrete() {
		return BottomKind
	}
	return c.Kind()
}

// IncompleteKind returns a mask of all kinds that this value may be.
func (v Value) IncompleteKind() Kind {
	if v.v == nil {
		return BottomKind
	}
	return v.v.Kind()
}

// MarshalJSON marshalls this value into valid JSON.
func (v Value) MarshalJSON() (b []byte, err error) {
	b, err = v.appendJSON(v.ctx(), nil)
	if err != nil {
		return nil, unwrapJSONError(err)
	}
	return b, nil
}

func (v Value) appendJSON(ctx *adt.OpContext, b []byte) ([]byte, error) {
	v, _ = v.Default()
	if v.v == nil {
		return append(b, "null"...), nil
	}
	x := v.eval(ctx)

	if _, ok := x.(adt.Resolver); ok {
		return nil, marshalErrf(v, x, adt.IncompleteError, "value %q contains unresolved references", str(ctx, x))
	}
	if !adt.IsConcrete(x) {
		return nil, marshalErrf(v, x, adt.IncompleteError, "cannot convert incomplete value %q to JSON", str(ctx, x))
	}

	// TODO: implement marshalles in value.
	switch k := x.Kind(); k {
	case adt.NullKind:
		return append(b, "null"...), nil
	case adt.BoolKind:
		b2, err := json.Marshal(x.(*adt.Bool).B)
		return append(b, b2...), err
	case adt.IntKind, adt.FloatKind, adt.NumberKind:
		// [apd.Decimal] offers no [json.Marshaler] method,
		// however the "G" formatting appears to result in valid JSON
		// for any valid CUE number that we've come across so far.
		// Upstream also rejected adding JSON methods in favor of [encoding.TextMarshaler].
		//
		// As an optimization, use the append-like API directly which is equivalent to
		// [apd.Decimal.MarshalText], allowing us to avoid extra copies.
		return x.(*adt.Num).X.Append(b, 'G'), nil
	case adt.StringKind:
		// Do not use json.Marshal as it escapes HTML.
		b2, err := internaljson.Marshal(x.(*adt.String).Str)
		return append(b, b2...), err
	case adt.BytesKind:
		b2, err := json.Marshal(x.(*adt.Bytes).B)
		return append(b, b2...), err
	case adt.ListKind:
		i := v.mustList(ctx)
		return listAppendJSON(b, &i)
	case adt.StructKind:
		obj, err := v.structValData(ctx)
		if err != nil {
			return nil, toMarshalErr(v, err)
		}
		return obj.appendJSON(b)
	case adt.BottomKind:
		return nil, toMarshalErr(v, x.(*adt.Bottom))
	default:
		return nil, marshalErrf(v, x, 0, "cannot convert value %q of type %T to JSON", str(ctx, x), x)
	}
}

// Syntax converts the possibly partially evaluated value into syntax. This
// can use used to print the value with package format.
func (v Value) Syntax(opts ...Option) ast.Node {
	// TODO: the default should ideally be simplified representation that
	// exactly represents the value. The latter can currently only be
	// ensured with Raw().
	if v.v == nil {
		return nil
	}
	o := getOptions(opts)

	p := export.Profile{
		Simplify:        !o.raw,
		TakeDefaults:    o.final,
		ShowOptional:    !o.omitOptional && !o.concrete,
		ShowDefinitions: !o.omitDefinitions && !o.concrete,
		ShowHidden:      !o.omitHidden && !o.concrete,
		ShowAttributes:  !o.omitAttrs,
		ShowDocs:        o.docs,
		ShowErrors:      o.showErrors,
		InlineImports:   o.inlineImports,
		Fragment:        o.raw,
	}

	pkgID := v.instance().ID()

	bad := func(name string, err error) ast.Node {
		const format = `"%s: internal error
Error: %s

Profile:
%#v

Value:
%v

You could file a bug with the above information at:
    https://cuelang.org/issues/new?assignees=&labels=NeedsInvestigation&template=bug_report.md&title=.
`
		cg := &ast.CommentGroup{Doc: true}
		msg := fmt.Sprintf(format, name, err, p, v)
		for _, line := range strings.Split(msg, "\n") {
			cg.List = append(cg.List, &ast.Comment{Text: "// " + line})
		}
		x := &ast.BadExpr{}
		ast.AddComment(x, cg)
		return x
	}

	// var expr ast.Expr
	var err error
	var f *ast.File
	if o.concrete || o.final || o.resolveReferences {
		f, err = p.Vertex(v.idx, pkgID, v.v)
		if err != nil {
			return bad(`"cuelang.org/go/internal/core/export".Vertex`, err)
		}
	} else {
		p.AddPackage = true
		f, err = p.Def(v.idx, pkgID, v.v)
		if err != nil {
			return bad(`"cuelang.org/go/internal/core/export".Def`, err)
		}
	}

outer:
	for _, d := range f.Decls {
		switch d.(type) {
		case *ast.Package, *ast.ImportDecl:
			return f
		case *ast.CommentGroup, *ast.Attribute:
		default:
			break outer
		}
	}

	if len(f.Decls) == 1 {
		if e, ok := f.Decls[0].(*ast.EmbedDecl); ok {
			for _, c := range ast.Comments(e) {
				ast.AddComment(f, c)
			}
			for _, c := range ast.Comments(e.Expr) {
				ast.AddComment(f, c)
			}
			ast.SetComments(e.Expr, f.Comments())
			return e.Expr
		}
	}
	st := &ast.StructLit{
		Elts: f.Decls,
	}
	ast.SetComments(st, f.Comments())
	return st
}

// Doc returns all documentation comments associated with the field from which
// the current value originates.
func (v Value) Doc() []*ast.CommentGroup {
	if v.v == nil {
		return nil
	}
	return export.ExtractDoc(v.v)
}

// Source returns the original node for this value. The return value may not
// be an [ast.Expr]. For instance, a struct kind may be represented by a
// struct literal, a field comprehension, or a file. It returns nil for
// computed nodes. Use [Value.Expr] to get all source values that apply to a field.
func (v Value) Source() ast.Node {
	if v.v == nil {
		return nil
	}
	count := 0
	var src ast.Node
	v.v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
		src = c.Source()
		count++
		return true
	})
	if count > 1 || src == nil {
		src = v.v.Value().Source()
	}
	return src
}

// If v exactly represents a package, BuildInstance returns
// the build instance corresponding to the value; otherwise it returns nil.
//
// The value returned by [Value.ReferencePath] will commonly represent a package.
func (v Value) BuildInstance() *build.Instance {
	if v.idx == nil {
		return nil
	}
	return v.idx.GetInstanceFromNode(v.v)
}

// Err returns the error represented by v or nil v is not an error.
func (v Value) Err() error {
	if err := v.checkKind(v.ctx(), adt.BottomKind); err != nil {
		return v.toErr(err)
	}
	return nil
}

// Pos returns position information.
//
// Use [Value.Expr] to get positions for all conjuncts and disjuncts.
func (v Value) Pos() token.Pos {
	if v.v == nil {
		return token.NoPos
	}

	if src := v.Source(); src != nil {
		if pos := src.Pos(); pos != token.NoPos {
			return pos
		}
	}
	// Pick the most-concrete field.
	var p token.Pos
	v.v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
		x := c.Elem()
		pp := pos(x)
		if pp == token.NoPos {
			return true
		}
		p = pp
		// Prefer struct conjuncts with actual fields.
		if s, ok := x.(*adt.StructLit); ok && len(s.Fields) > 0 {
			return false
		}
		return true
	})
	return p
}

// TODO: IsFinal: this value can never be changed.

// Allows reports whether a field with the given selector could be added to v.
//
// Allows does not take into account validators like list.MaxItems(4). This may
// change in the future.
func (v Value) Allows(sel Selector) bool {
	if v.v.HasEllipsis {
		return true
	}
	c := v.ctx()
	f := sel.sel.feature(c)
	return v.v.Accept(c, f)
}

// IsConcrete reports whether the current value is a concrete scalar value
// (not relying on default values), a terminal error, a list, or a struct.
// It does not verify that values of lists or structs are concrete themselves.
// To check whether there is a concrete default, use this method on [Value.Default].
func (v Value) IsConcrete() bool {
	if v.v == nil {
		return false // any is neither concrete, not a list or struct.
	}
	w := v.v.DerefValue()
	if b := w.Bottom(); b != nil {
		return !b.IsIncomplete()
	}
	if !adt.IsConcrete(w) {
		return false
	}
	return true
}

// // Deprecated: IsIncomplete
// //
// // It indicates that the value cannot be fully evaluated due to
// // insufficient information.
// func (v Value) IsIncomplete() bool {
// 	panic("deprecated")
// }

// Exists reports whether this value existed in the configuration.
func (v Value) Exists() bool {
	if v.v == nil {
		return false
	}
	if err := v.v.Bottom(); err != nil {
		return !err.NotExists
	}
	return true
}

// isKind reports whether a value matches a particular kind.
// It is like checkKind, except that it doesn't construct an error value.
// Note that when v is bottom, the method always returns false.
func (v Value) isKind(ctx *adt.OpContext, want adt.Kind) bool {
	if v.v == nil {
		return false
	}
	x := v.eval(ctx)
	if _, ok := x.(*adt.Bottom); ok {
		return false
	}
	k := x.Kind()
	if want != adt.BottomKind {
		if k&want == adt.BottomKind {
			return false
		}
		if !adt.IsConcrete(x) {
			return false
		}
	}
	return true
}

// checkKind returns a bottom error if a value does not match a particular kind,
// describing the reason why. Note that when v is bottom, it is always returned as-is.
func (v Value) checkKind(ctx *adt.OpContext, want adt.Kind) *adt.Bottom {
	if v.v == nil {
		return errNotExists
	}
	// TODO: use checkKind
	x := v.eval(ctx)
	if b, ok := x.(*adt.Bottom); ok {
		return b
	}
	k := x.Kind()
	if want != adt.BottomKind {
		if k&want == adt.BottomKind {
			return mkErr(x, "cannot use value %v (type %s) as %s",
				ctx.Str(x), k, want)
		}
		if !adt.IsConcrete(x) {
			return mkErr(x, adt.IncompleteError, "non-concrete value %v", k)
		}
	}
	return nil
}

func makeInt(v Value, x int64) Value {
	n := &adt.Num{K: adt.IntKind}
	n.X.SetInt64(x)
	return remakeFinal(v, n)
}

// Len returns the number of items of the underlying value.
// For lists it reports the capacity of the list. For structs it indicates the
// number of fields, for bytes the number of bytes.
func (v Value) Len() Value {
	if v.v != nil {
		switch x := v.eval(v.ctx()).(type) {
		case *adt.Vertex:
			if x.IsList() {
				n := &adt.Num{K: adt.IntKind}
				n.X.SetInt64(int64(len(x.Elems())))
				if x.IsClosedList() {
					return remakeFinal(v, n)
				}
				// Note: this HAS to be a Conjunction value and cannot be
				// an adt.BinaryExpr, as the expressions would be considered
				// to be self-contained and unresolvable when evaluated
				// (can never become concrete).
				c := &adt.Conjunction{Values: []adt.Value{
					&adt.BasicType{K: adt.IntKind},
					&adt.BoundValue{Op: adt.GreaterEqualOp, Value: n},
				}}
				return remakeFinal(v, c)

			}
		case *adt.Bytes:
			return makeInt(v, int64(len(x.B)))
		case *adt.String:
			return makeInt(v, int64(len([]rune(x.Str))))
		}
	}
	const msg = "len not supported for type %v"
	return remakeValue(v, nil, mkErr(v.v, msg, v.Kind()))

}

// Elem returns the value of undefined element types of lists and structs.
//
// Deprecated: use [Value.LookupPath] in combination with [AnyString] or [AnyIndex].
func (v hiddenValue) Elem() (Value, bool) {
	sel := AnyString
	if v.v.IsList() {
		sel = AnyIndex
	}
	x := v.LookupPath(MakePath(sel))
	return x, x.Exists()
}

// List creates an iterator over the values of a list or reports an error if
// v is not a list.
func (v Value) List() (Iterator, error) {
	v, _ = v.Default()
	ctx := v.ctx()
	if err := v.checkKind(ctx, adt.ListKind); err != nil {
		return Iterator{idx: v.idx, ctx: ctx}, v.toErr(err)
	}
	return v.mustList(ctx), nil
}

// mustList is like [Value.List], but reusing ctx and leaving it to the caller
// to apply defaults and check the kind.
func (v Value) mustList(ctx *adt.OpContext) Iterator {
	arcs := []*adt.Vertex{}
	for _, a := range v.v.Elems() {
		if a.Label.IsInt() {
			arcs = append(arcs, a)
		}
	}
	return Iterator{idx: v.idx, ctx: ctx, val: v, arcs: arcs}
}

// Null reports an error if v is not null.
func (v Value) Null() error {
	v, _ = v.Default()
	if err := v.checkKind(v.ctx(), adt.NullKind); err != nil {
		return v.toErr(err)
	}
	return nil
}

// IsNull reports whether v is null.
func (v Value) IsNull() bool {
	v, _ = v.Default()
	return v.isKind(v.ctx(), adt.NullKind)
}

// Bool returns the bool value of v or false and an error if v is not a boolean.
func (v Value) Bool() (bool, error) {
	v, _ = v.Default()
	ctx := v.ctx()
	if err := v.checkKind(ctx, adt.BoolKind); err != nil {
		return false, v.toErr(err)
	}
	return v.eval(ctx).(*adt.Bool).B, nil
}

// String returns the string value if v is a string or an error otherwise.
func (v Value) String() (string, error) {
	v, _ = v.Default()
	ctx := v.ctx()
	if err := v.checkKind(ctx, adt.StringKind); err != nil {
		return "", v.toErr(err)
	}
	return v.eval(ctx).(*adt.String).Str, nil
}

// Bytes returns a byte slice if v represents a list of bytes or an error
// otherwise.
func (v Value) Bytes() ([]byte, error) {
	v, _ = v.Default()
	ctx := v.ctx()
	switch x := v.eval(ctx).(type) {
	case *adt.Bytes:
		return bytes.Clone(x.B), nil
	case *adt.String:
		return []byte(x.Str), nil
	}
	return nil, v.toErr(v.checkKind(ctx, adt.BytesKind|adt.StringKind))
}

// Reader returns a new Reader if v is a string or bytes type and an error
// otherwise.
func (v hiddenValue) Reader() (io.Reader, error) {
	v, _ = v.Default()
	ctx := v.ctx()
	switch x := v.eval(ctx).(type) {
	case *adt.Bytes:
		return bytes.NewReader(x.B), nil
	case *adt.String:
		return strings.NewReader(x.Str), nil
	}
	return nil, v.toErr(v.checkKind(ctx, adt.StringKind|adt.BytesKind))
}

// TODO: distinguish between optional, hidden, etc. Probably the best approach
// is to mark options in context and have a single function for creating
// a structVal.

// structVal returns an structVal or an error if v is not a struct.
func (v Value) structValData(ctx *adt.OpContext) (structValue, *adt.Bottom) {
	return v.structValOpts(ctx, options{
		omitHidden:      true,
		omitDefinitions: true,
		omitOptional:    true,
	})
}

// structVal returns an structVal or an error if v is not a struct.
func (v Value) structValOpts(ctx *adt.OpContext, o options) (s structValue, err *adt.Bottom) {
	orig := v
	v, _ = v.Default()

	obj := v.v

	switch b := v.v.Bottom(); {
	case b != nil && b.IsIncomplete() && !o.concrete && !o.final:

	// Allow scalar values if hidden or definition fields are requested.
	case !o.omitHidden, !o.omitDefinitions:
	default:
		if err := v.checkKind(ctx, adt.StructKind); err != nil && !err.ChildError {
			return structValue{}, err
		}
	}

	// features are topologically sorted.
	// TODO(sort): make sort order part of the evaluator and eliminate this.
	features := export.VertexFeatures(ctx, obj)

	arcs := make([]*adt.Vertex, 0, len(obj.Arcs))

	for _, f := range features {
		if f.IsLet() {
			continue
		}
		if f.IsDef() && (o.omitDefinitions || o.concrete) {
			continue
		}
		if f.IsHidden() && o.omitHidden {
			continue
		}
		arc := obj.LookupRaw(f)
		if arc == nil {
			continue
		}
		switch arc.ArcType {
		case adt.ArcOptional:
			if o.omitOptional {
				continue
			}
		case adt.ArcRequired:
			// We report an error for required fields if the configuration is
			// final or concrete. We also do so if omitOptional is true, as
			// it avoids hiding errors in required fields.
			if o.omitOptional || o.concrete || o.final {
				arc = &adt.Vertex{
					Label:     f,
					Parent:    arc.Parent,
					Conjuncts: arc.Conjuncts,
					BaseValue: adt.NewRequiredNotPresentError(ctx, arc),
				}
				arc.ForceDone()
			}
		}
		arcs = append(arcs, arc)
	}
	return structValue{ctx, orig, obj, arcs}, nil
}

// Struct returns the underlying struct of a value or an error if the value
// is not a struct.
//
// Deprecated: use [Value.Fields].
func (v hiddenValue) Struct() (*Struct, error) {
	ctx := v.ctx()
	obj, err := v.structValOpts(ctx, options{})
	if err != nil {
		return nil, v.toErr(err)
	}
	return &Struct{obj}, nil
}

// Struct represents a CUE struct value.
//
// Deprecated: only used by deprecated functions.
type Struct struct {
	structValue
}

type hiddenStruct = Struct

// FieldInfo contains information about a struct field.
//
// Deprecated: only used by deprecated functions.
type FieldInfo struct {
	Selector string
	Name     string // Deprecated: use [FieldInfo.Selector]
	Pos      int
	Value    Value

	SelectorType SelectorType

	IsDefinition bool
	IsOptional   bool
	IsHidden     bool
}

func (s *hiddenStruct) Len() int {
	return s.structValue.Len()
}

// field reports information about the ith field, i < o.Len().
func (s *hiddenStruct) Field(i int) FieldInfo {
	a := s.at(i)
	opt := a.ArcType == adt.ArcOptional
	selType := featureToSelType(a.Label, a.ArcType)
	ctx := s.v.ctx()

	v := makeChildValue(s.v, a)
	name := s.v.idx.LabelStr(a.Label)
	str := a.Label.SelectorString(ctx)
	return FieldInfo{str, name, i, v, selType, a.Label.IsDef(), opt, a.Label.IsHidden()}
}

// FieldByName looks up a field for the given name. If isIdent is true, it will
// look up a definition or hidden field (starting with `_` or `_#`). Otherwise
// it interprets name as an arbitrary string for a regular field.
func (s *hiddenStruct) FieldByName(name string, isIdent bool) (FieldInfo, error) {
	f := s.v.idx.Label(name, isIdent)
	for i, a := range s.arcs {
		if a.Label == f {
			return s.Field(i), nil
		}
	}
	return FieldInfo{}, errNotFound
}

// Fields creates an iterator over the struct's fields.
func (s *hiddenStruct) Fields(opts ...Option) *Iterator {
	iter, _ := s.v.Fields(opts...)
	return iter
}

// Fields creates an iterator over v's fields if v is a struct or an error
// otherwise.
func (v Value) Fields(opts ...Option) (*Iterator, error) {
	o := options{omitDefinitions: true, omitHidden: true, omitOptional: true}
	o.updateOptions(opts)
	ctx := v.ctx()
	obj, err := v.structValOpts(ctx, o)
	if err != nil {
		return &Iterator{idx: v.idx, ctx: ctx}, v.toErr(err)
	}

	return &Iterator{idx: v.idx, ctx: ctx, val: v, arcs: obj.arcs}, nil
}

// Lookup reports the value at a path starting from v. The empty path returns v
// itself.
//
// [Value.Exists] can be used to verify if the returned value existed.
// Lookup cannot be used to look up hidden or optional fields or definitions.
//
// Deprecated: use [Value.LookupPath]. At some point before v1.0.0, this method will
// be removed to be reused eventually for looking up a selector.
func (v hiddenValue) Lookup(path ...string) Value {
	ctx := v.ctx()
	for _, k := range path {
		// TODO(eval) TODO(error): always search in full data and change error
		// message if a field is found but is of the incorrect type.
		obj, err := v.structValData(ctx)
		if err != nil {
			// TODO: return a Value at the same location and a new error?
			return newErrValue(v, err)
		}
		v = obj.Lookup(k)
	}
	return v
}

// Path returns the path to this value from the root of an Instance.
//
// This is currently only defined for values that have a fixed path within
// a configuration, and thus not those that are derived from Elem, Template,
// or programmatically generated values such as those returned by Unify.
func (v Value) Path() Path {
	if v.v == nil {
		return Path{}
	}
	return Path{path: appendPath(nil, v)}
}

// Path computes the sequence of Features leading from the root to of the
// instance to this Vertex.
func appendPath(a []Selector, v Value) []Selector {
	if p := v.parent(); p.v != nil {
		a = appendPath(a, p)
	}

	if v.v.Label == 0 {
		// A Label may be 0 for programmatically inserted nodes.
		return a
	}

	f := v.v.Label
	if index := f.Index(); index == adt.MaxIndex {
		return append(a, Selector{anySelector(f)})
	}

	var sel selector
	switch t := f.Typ(); t {
	case adt.IntLabel:
		sel = indexSelector(f)
	case adt.DefinitionLabel:
		sel = definitionSelector(f.SelectorString(v.idx))

	case adt.HiddenDefinitionLabel, adt.HiddenLabel:
		sel = scopedSelector{
			name: f.IdentString(v.idx),
			pkg:  f.PkgID(v.idx),
		}

	case adt.StringLabel:
		sel = stringSelector(f.StringValue(v.idx))

	default:
		panic(fmt.Sprintf("unsupported label type %v", t))
	}
	return append(a, Selector{sel})
}

// LookupDef is equal to LookupPath(MakePath(Def(name))).
//
// Deprecated: use [Value.LookupPath].
func (v hiddenValue) LookupDef(name string) Value {
	return v.LookupPath(MakePath(Def(name)))
}

var errNotFound = errors.Newf(token.NoPos, "field not found")

// FieldByName looks up a field for the given name. If isIdent is true, it will
// look up a definition or hidden field (starting with `_` or `_#`). Otherwise
// it interprets name as an arbitrary string for a regular field.
//
// Deprecated: use [Value.LookupPath].
func (v hiddenValue) FieldByName(name string, isIdent bool) (f FieldInfo, err error) {
	s, err := v.Struct()
	if err != nil {
		return f, err
	}
	return s.FieldByName(name, isIdent)
}

// LookupField reports information about a field of v.
//
// Deprecated: use [Value.LookupPath].
func (v hiddenValue) LookupField(name string) (FieldInfo, error) {
	s, err := v.Struct()
	if err != nil {
		// TODO: return a Value at the same location and a new error?
		return FieldInfo{}, err
	}
	f, err := s.FieldByName(name, true)
	if err != nil {
		return f, err
	}
	if f.IsHidden {
		return f, errNotFound
	}
	return f, err
}

// TODO: expose this API?
//
// // EvalExpr evaluates an expression within the scope of v, which must be
// // a struct.
// //
// // Expressions may refer to builtin packages if they can be uniquely identified.
// func (v Value) EvalExpr(expr ast.Expr) Value {
// 	ctx := v.ctx()
// 	result := evalExpr(ctx, v.eval(ctx), expr)
// 	return newValueRoot(ctx, result)
// }

// Fill creates a new value by unifying v with the value of x at the given path.
//
// Values may be any Go value that can be converted to CUE, an ast.Expr or
// a Value. In the latter case, it will panic if the Value is not from the same
// Runtime.
//
// Any reference in v referring to the value at the given path will resolve
// to x in the newly created value. The resulting value is not validated.
//
// Deprecated: use [Value.FillPath].
func (v hiddenValue) Fill(x interface{}, path ...string) Value {
	if v.v == nil {
		return v
	}
	selectors := make([]Selector, len(path))
	for i, p := range path {
		selectors[i] = Str(p)
	}
	return v.FillPath(MakePath(selectors...), x)
}

// FillPath creates a new value by unifying v with the value of x at the given
// path.
//
// If x is an [ast.Expr], it will be evaluated within the context of the
// given path: identifiers that are not resolved within the expression are
// resolved as if they were defined at the path position.
//
// If x is a Value, it will be used as is. It panics if x is not created
// from the same [Context] as v.
//
// Otherwise, the given Go value will be converted to CUE using the same rules
// as [Context.Encode].
//
// Any reference in v referring to the value at the given path will resolve to x
// in the newly created value. The resulting value is not validated.
func (v Value) FillPath(p Path, x interface{}) Value {
	if v.v == nil {
		// TODO: panic here?
		return v
	}
	ctx := v.ctx()
	if err := p.Err(); err != nil {
		return newErrValue(v, mkErr(nil, 0, "invalid path: %v", err))
	}
	var expr adt.Expr
	switch x := x.(type) {
	case Value:
		if v.idx != x.idx {
			panic("values are not from the same runtime")
		}
		expr = x.v
	case ast.Expr:
		n := getScopePrefix(v, p)
		// TODO: inject import path of current package?
		expr = resolveExpr(ctx, n, x)
	default:
		expr = convert.GoValueToValue(ctx, x, true)
	}
	for _, sel := range slices.Backward(p.path) {
		switch sel.Type() {
		case StringLabel | PatternConstraint:
			expr = &adt.StructLit{Decls: []adt.Decl{
				&adt.BulkOptionalField{
					Filter: &adt.BasicType{K: adt.StringKind},
					Value:  expr,
				},
			}}

		case IndexLabel | PatternConstraint:
			expr = &adt.ListLit{Elems: []adt.Elem{
				&adt.Ellipsis{Value: expr},
			}}

		case IndexLabel:
			i := sel.Index()
			list := &adt.ListLit{}
			any := &adt.Top{}
			// TODO(perf): make this a constant thing. This will be possible with the query extension.
			for range i {
				list.Elems = append(list.Elems, any)
			}
			list.Elems = append(list.Elems, expr, &adt.Ellipsis{})
			expr = list

		default:
			f := &adt.Field{
				Label:   sel.sel.feature(v.idx),
				Value:   expr,
				ArcType: adt.ArcMember,
			}
			switch sel.ConstraintType() {
			case OptionalConstraint:
				f.ArcType = adt.ArcOptional
			case RequiredConstraint:
				f.ArcType = adt.ArcRequired
			}

			expr = &adt.StructLit{Decls: []adt.Decl{f}}
		}
	}
	n := &adt.Vertex{}
	n.AddConjunct(adt.MakeRootConjunct(nil, expr))
	n.Finalize(ctx)
	w := makeValue(v.idx, n, v.parent_)
	return v.Unify(w)
}

// Template returns a function that represents the template definition for a
// struct in a configuration file. It returns nil if v is not a struct kind or
// if there is no template associated with the struct.
//
// The returned function returns the value that would be unified with field
// given its name.
//
// Deprecated: use [Value.LookupPath] in combination with using optional selectors.
func (v hiddenValue) Template() func(label string) Value {
	if v.v == nil {
		return nil
	}

	// Implementation for the old evaluator.
	types := v.v.OptionalTypes()
	switch {
	case types&(adt.HasAdditional|adt.HasPattern) != 0:
	case v.v.PatternConstraints != nil:
	default:
		return nil
	}

	return func(label string) Value {
		return v.LookupPath(MakePath(Str(label).Optional()))
	}
}

// Subsume reports nil when w is an instance of v or an error otherwise.
//
// Without options, the entire value is considered for assumption, which means
// Subsume tests whether  v is a backwards compatible (newer) API version of w.
//
// Use the [Final] option to check subsumption if a w is known to be final, and
// should assumed to be closed.
//
// Use the [Raw] option to do a low-level subsumption, taking defaults into
// account.
//
// Value v and w must be obtained from the same build. TODO: remove this
// requirement.
func (v Value) Subsume(w Value, opts ...Option) error {
	o := getOptions(opts)
	p := subsume.CUE
	switch {
	case o.final && o.ignoreClosedness:
		p = subsume.FinalOpen
	case o.final:
		p = subsume.Final
	case o.ignoreClosedness:
		p = subsume.API
	}
	if !o.raw {
		p.Defaults = true
	}
	ctx := v.ctx()
	return p.Value(ctx, v.v, w.v)
}

// TODO: this is likely not correct for V3. There are some cases where this is
// still used for V3. Transition away from those.
func allowed(ctx *adt.OpContext, parent, n *adt.Vertex) *adt.Bottom {
	if !parent.IsClosedList() && !parent.IsClosedStruct() {
		return nil
	}

	for _, a := range n.Arcs {
		if !parent.Accept(ctx, a.Label) {
			defer ctx.PopArc(ctx.PushArc(parent))
			label := a.Label.SelectorString(ctx)
			parent.Accept(ctx, a.Label)
			return ctx.NewErrf("field not allowed: %s", label)
		}
	}
	return nil
}

// Unify reports the greatest lower bound of v and w.
//
// Value v and w must be obtained from the same build.
// TODO: remove this requirement.
func (v Value) Unify(w Value) Value {
	if v.v == nil {
		return w
	}
	if w.v == nil || w.v == v.v {
		return v
	}

	ctx := v.ctx()
	defer ctx.PopArc(ctx.PushArc(v.v))

	n := adt.Unify(ctx, v.v, w.v)

	if ctx.Version == internal.EvalV2 {
		if err := n.Err(ctx); err != nil {
			return makeValue(v.idx, n, v.parent_)
		}
		if err := allowed(ctx, v.v, n); err != nil {
			return newErrValue(w, err)
		}
		if err := allowed(ctx, w.v, n); err != nil {
			return newErrValue(v, err)
		}
	}

	return makeValue(v.idx, n, v.parent_)
}

// UnifyAccept is like [Value.Unify](w), but will disregard the closedness rules for
// v and w, and will, instead, only allow fields that are present in accept.
//
// UnifyAccept is used to piecemeal unify individual conjuncts obtained from
// accept without violating closedness rules.
func (v Value) UnifyAccept(w Value, accept Value) Value {
	if v.v == nil {
		return w
	}
	if w.v == nil {
		return v
	}
	if accept.v == nil {
		panic("accept must exist")
	}

	n := &adt.Vertex{}
	ctx := v.ctx()

	switch ctx.Version {
	case internal.EvalV2:
		cv := adt.MakeRootConjunct(nil, v.v)
		cw := adt.MakeRootConjunct(nil, w.v)

		n.AddConjunct(cv)
		n.AddConjunct(cw)

	case internal.EvalV3:
		n.AddOpenConjunct(ctx, v.v)
		n.AddOpenConjunct(ctx, w.v)
	}
	n.Finalize(ctx)

	n.Parent = v.v.Parent
	n.Label = v.v.Label

	if err := n.Err(ctx); err != nil {
		return makeValue(v.idx, n, v.parent_)
	}
	if err := allowed(ctx, accept.v, n); err != nil {
		return newErrValue(accept, err)
	}

	return makeValue(v.idx, n, v.parent_)
}

// Equals reports whether two values are equal, ignoring optional fields.
// The result is undefined for incomplete values.
func (v Value) Equals(other Value) bool {
	if v.v == nil || other.v == nil {
		return false
	}
	return adt.Equal(v.ctx(), v.v, other.v, 0)
}

func (v Value) instance() *Instance {
	if v.v == nil {
		return nil
	}
	return getImportFromNode(v.idx, v.v)
}

// Reference returns the instance and path referred to by this value such that
// inst.Lookup(path) resolves to the same value, or no path if this value is not
// a reference. If a reference contains index selection (foo[bar]), it will
// only return a reference if the index resolves to a concrete value.
//
// Deprecated: use [Value.ReferencePath]
func (v hiddenValue) Reference() (inst *Instance, path []string) {
	root, p := v.ReferencePath()
	if !root.Exists() {
		return nil, nil
	}

	inst = getImportFromNode(v.idx, root.v)
	for _, sel := range p.Selectors() {
		switch x := sel.sel.(type) {
		case stringSelector:
			path = append(path, string(x))
		default:
			path = append(path, sel.String())
		}
	}

	return inst, path
}

// ReferencePath returns the value and path referred to by this value such that
// [Value.LookupPath](path) resolves to the same value, or no path if this value
// is not a reference.
func (v Value) ReferencePath() (root Value, p Path) {
	// TODO: don't include references to hidden fields.
	c, count := v.v.SingleConjunct()
	if count != 1 {
		return Value{}, Path{}
	}
	ctx := v.ctx()

	env, expr := c.EnvExpr()

	x, path := reference(v.idx, ctx, env, expr)
	if x == nil {
		return Value{}, Path{}
	}
	// NOTE: due to structure sharing, the path of the referred node may end
	// up different from the one explicitly pointed to. The value will be the
	// same, but the scope may differ.
	// TODO(structureshare): see if we can construct the original path. This
	// only has to be done if structures are being shared.
	return makeValue(v.idx, x, nil), Path{path: path}
}

func reference(rt *runtime.Runtime, c *adt.OpContext, env *adt.Environment, r adt.Expr) (inst *adt.Vertex, path []Selector) {
	ctx := c
	defer ctx.PopState(ctx.PushState(env, r.Source()))

	switch x := r.(type) {
	// TODO: do we need to handle Vertex as well, in case this is hard-wired?
	// Probably not, as this results from dynamic content.

	case *adt.NodeLink:
		// TODO: consider getting rid of NodeLink.
		inst, path = mkPath(rt, nil, x.Node)

	case *adt.FieldReference:
		env := ctx.Env(x.UpCount)
		inst, path = mkPath(rt, nil, env.Vertex)
		path = appendSelector(path, featureToSel(x.Label, rt))

	case *adt.LabelReference:
		env := ctx.Env(x.UpCount)
		return mkPath(rt, nil, env.Vertex)

	case *adt.DynamicReference:
		env := ctx.Env(x.UpCount)
		inst, path = mkPath(rt, nil, env.Vertex)
		v, _ := ctx.Evaluate(env, x.Label)
		path = appendSelector(path, valueToSel(v))

	case *adt.ImportReference:
		inst = rt.LoadImport(rt.LabelStr(x.ImportPath))

	case *adt.SelectorExpr:
		inst, path = reference(rt, c, env, x.X)
		path = appendSelector(path, featureToSel(x.Sel, rt))

	case *adt.IndexExpr:
		inst, path = reference(rt, c, env, x.X)
		v, _ := ctx.Evaluate(env, x.Index)
		path = appendSelector(path, valueToSel(v))
	}
	if inst == nil {
		return nil, nil
	}
	inst.Finalize(c)
	return inst, path
}

func mkPath(r *runtime.Runtime, a []Selector, v *adt.Vertex) (root *adt.Vertex, path []Selector) {
	if v.Parent == nil {
		return v, a
	}
	root, path = mkPath(r, a, v.Parent)
	path = appendSelector(path, featureToSel(v.Label, r))
	return root, path
}

type options struct {
	concrete          bool // enforce that values are concrete
	raw               bool // show original values
	hasHidden         bool
	omitHidden        bool
	omitDefinitions   bool
	omitOptional      bool
	omitAttrs         bool
	inlineImports     bool
	resolveReferences bool
	showErrors        bool
	final             bool
	ignoreClosedness  bool // used for comparing APIs
	docs              bool
	disallowCycles    bool // implied by concrete
}

// An Option defines modes of evaluation.
type Option option

type option func(p *options)

// Final indicates a value is final. It implicitly closes all structs and lists
// in a value and selects defaults.
func Final() Option {
	return func(o *options) {
		o.final = true
		o.omitDefinitions = true
		o.omitOptional = true
		o.omitHidden = true
	}
}

// Schema specifies the input is a Schema. Used by Subsume.
func Schema() Option {
	return func(o *options) {
		o.ignoreClosedness = true
	}
}

// Concrete ensures that all values are concrete.
//
// For [Value.Validate] this means it returns an error if this is not the case.
// In other cases a non-concrete value will be replaced with an error.
func Concrete(concrete bool) Option {
	return func(p *options) {
		if concrete {
			p.concrete = true
			p.final = true
			if !p.hasHidden {
				p.omitHidden = true
				p.omitDefinitions = true
			}
		}
	}
}

// InlineImports causes references to values within imported packages to be
// inlined. References to builtin packages are not inlined.
func InlineImports(expand bool) Option {
	return func(p *options) { p.inlineImports = expand }
}

// DisallowCycles forces validation in the presence of cycles, even if
// non-concrete values are allowed. This is implied by [Concrete].
func DisallowCycles(disallow bool) Option {
	return func(p *options) { p.disallowCycles = disallow }
}

// ResolveReferences forces the evaluation of references when outputting.
//
// Deprecated: [Value.Syntax] will now always attempt to resolve dangling references and
// make the output self-contained. When [Final] or [Concrete] are used,
// it will already attempt to resolve all references.
// See also [InlineImports].
func ResolveReferences(resolve bool) Option {
	return func(p *options) {
		p.resolveReferences = resolve

		// ResolveReferences is implemented as a Value printer, rather than
		// a definition printer, even though it should be more like the latter.
		// To reflect this we convert incomplete errors to their original
		// expression.
		//
		// TODO: ShowErrors mostly shows incomplete errors, even though this is
		// just an approximation. There seems to be some inconsistencies as to
		// when child errors are marked as such, making the conversion somewhat
		// inconsistent. This option is conservative, though.
		p.showErrors = true
	}
}

// ErrorsAsValues treats errors as a regular value, including them at the
// location in the tree where they occur, instead of interpreting them as a
// configuration-wide failure that is returned instead of root value.
// Used by Syntax.
func ErrorsAsValues(show bool) Option {
	return func(p *options) { p.showErrors = show }
}

// Raw tells Syntax to generate the value as is without any simplifications and
// without ensuring a value is self contained. Any references are left dangling.
// The generated syntax tree can be compiled by passing the Value from which it
// was generated to scope.
//
// The option InlineImports overrides this option with respect to ensuring the
// output is self contained.
func Raw() Option {
	return func(p *options) { p.raw = true }
}

// All indicates that all fields and values should be included in processing
// even if they can be elided or omitted.
func All() Option {
	return func(p *options) {
		p.omitAttrs = false
		p.omitHidden = false
		p.omitDefinitions = false
		p.omitOptional = false
	}
}

// Docs indicates whether docs should be included.
func Docs(include bool) Option {
	return func(p *options) { p.docs = true }
}

// Definitions indicates whether definitions should be included.
//
// Definitions may still be included for certain functions if they are referred
// to by other values.
func Definitions(include bool) Option {
	return func(p *options) {
		p.hasHidden = true
		p.omitDefinitions = !include
	}
}

// Hidden indicates that definitions and hidden fields should be included.
func Hidden(include bool) Option {
	return func(p *options) {
		p.hasHidden = true
		p.omitHidden = !include
		p.omitDefinitions = !include
	}
}

// Optional indicates that optional fields should be included.
func Optional(include bool) Option {
	return func(p *options) { p.omitOptional = !include }
}

// Attributes indicates that attributes should be included.
func Attributes(include bool) Option {
	return func(p *options) { p.omitAttrs = !include }
}

func getOptions(opts []Option) (o options) {
	o.updateOptions(opts)
	return
}

func (o *options) updateOptions(opts []Option) {
	for _, fn := range opts {
		fn(o)
	}
}

// Validate reports any errors, recursively. The returned error may represent
// more than one error, retrievable with [errors.Errors], if more than one
// exists.
//
// Note that by default not all errors are reported, unless options like
// [Concrete] are used. The [Final] option can be used to check for missing
// required fields.
func (v Value) Validate(opts ...Option) error {
	o := options{}
	o.updateOptions(opts)

	cfg := &adt.ValidateConfig{
		Concrete:       o.concrete,
		Final:          o.final,
		DisallowCycles: o.disallowCycles,
		AllErrors:      true,
	}

	b := adt.Validate(v.ctx(), v.v, cfg)
	if b != nil {
		return v.toErr(b)
	}
	return nil
}

// Walk descends into all values of v, calling f. If f returns false, Walk
// will not descent further. It only visits values that are part of the data
// model, so this excludes definitions and optional, required, and hidden
// fields.
func (v Value) Walk(before func(Value) bool, after func(Value)) {
	ctx := v.ctx()
	switch v.Kind() {
	case StructKind:
		if before != nil && !before(v) {
			return
		}
		obj, _ := v.structValOpts(ctx, options{
			omitHidden:      true,
			omitDefinitions: true,
		})
		for i := range obj.Len() {
			_, v := obj.At(i)
			// TODO: should we error on required fields, or visit them anyway?
			// Walk is not designed to error at this moment, though.
			if v.v.ArcType != adt.ArcMember {
				continue
			}
			v.Walk(before, after)
		}
	case ListKind:
		if before != nil && !before(v) {
			return
		}
		list, _ := v.List()
		for list.Next() {
			list.Value().Walk(before, after)
		}
	default:
		if before != nil {
			before(v)
		}
	}
	if after != nil {
		after(v)
	}
}

// Expr reports the operation of the underlying expression and the values it
// operates on.
//
// For unary expressions, it returns the single value of the expression.
//
// For binary expressions it returns first the left and right value, in that
// order. For associative operations however, (for instance '&' and '|'), it may
// return more than two values, where the operation is to be applied in
// sequence.
//
// For selector and index expressions it returns the subject and then the index.
// For selectors, the index is the string value of the identifier.
//
// For interpolations it returns a sequence of values to be concatenated, some
// of which will be literal strings and some unevaluated expressions.
//
// A builtin call expression returns the value of the builtin followed by the
// args of the call.
func (v Value) Expr() (Op, []Value) {
	// TODO: return v if this is complete? Yes for now
	if v.v == nil {
		return NoOp, nil
	}

	var expr adt.Expr
	var env *adt.Environment

	if v.v.IsData() {
		expr = v.v.Value()
		goto process

	}

	switch c, count := v.v.SingleConjunct(); count {
	case 0:
		if v.v.BaseValue == nil {
			return NoOp, []Value{makeValue(v.idx, v.v, v.parent_)} // TODO: v?
		}
		expr = v.v.Value()

	case 1:
		// the default case, processed below.
		env, expr = c.EnvExpr()
		if w, ok := expr.(*adt.Vertex); ok {
			return Value{v.idx, w, v.parent_}.Expr()
		}

	default:
		a := []Value{}
		ctx := v.ctx()
		v.v.VisitLeafConjuncts(func(c adt.Conjunct) bool {
			// Keep parent here. TODO: do we need remove the requirement
			// from other conjuncts?
			n := &adt.Vertex{
				Parent: v.v.Parent,
				Label:  v.v.Label,
			}
			n.AddConjunct(c)
			n.Finalize(ctx)
			a = append(a, makeValue(v.idx, n, v.parent_))
			return true
		})

		return adt.AndOp, a
	}

process:

	// TODO: replace appends with []Value{}. For not leave.
	a := []Value{}
	op := NoOp
	switch x := expr.(type) {
	case *adt.BinaryExpr:
		a = append(a, remakeValue(v, env, x.X))
		a = append(a, remakeValue(v, env, x.Y))
		op = x.Op
	case *adt.UnaryExpr:
		a = append(a, remakeValue(v, env, x.X))
		op = x.Op
	case *adt.BoundExpr:
		a = append(a, remakeValue(v, env, x.Expr))
		op = x.Op
	case *adt.BoundValue:
		a = append(a, remakeValue(v, env, x.Value))
		op = x.Op
	case *adt.Conjunction:
		// pre-expanded unification
		for _, conjunct := range x.Values {
			a = append(a, remakeValue(v, env, conjunct))
		}
		op = AndOp
	case *adt.Disjunction:
		count := 0
	outer:
		for i, disjunct := range x.Values {
			if i < x.NumDefaults {
				for _, n := range x.Values[x.NumDefaults:] {
					if subsume.Simplify.Value(v.ctx(), n, disjunct) == nil {
						continue outer
					}
				}
			}
			count++
			a = append(a, remakeValue(v, env, disjunct))
		}
		if count > 1 {
			op = OrOp
		}

	case *adt.DisjunctionExpr:
		// Filter defaults that are subsumed by another value.
		count := 0
	outerExpr:
		for _, disjunct := range x.Values {
			if disjunct.Default {
				for _, n := range x.Values {
					a := adt.Vertex{
						Label: v.v.Label,
					}
					b := a
					a.AddConjunct(adt.MakeRootConjunct(env, n.Val))
					b.AddConjunct(adt.MakeRootConjunct(env, disjunct.Val))

					ctx := v.ctx()
					a.Finalize(ctx)
					b.Finalize(ctx)
					if allowed(ctx, v.v, &b) != nil {
						// Everything subsumed bottom
						continue outerExpr
					}
					if allowed(ctx, v.v, &a) != nil {
						// An error doesn't subsume anything except another error.
						continue
					}
					a.Parent = v.v.Parent
					if !n.Default && subsume.Simplify.Value(ctx, &a, &b) == nil {
						continue outerExpr
					}
				}
			}
			count++
			a = append(a, remakeValue(v, env, disjunct.Val))
		}
		if count > 1 {
			op = adt.OrOp
		}

	case *adt.Interpolation:
		for _, p := range x.Parts {
			a = append(a, remakeValue(v, env, p))
		}
		op = InterpolationOp

	case *adt.FieldReference:
		// TODO: allow hard link
		ctx := v.ctx()
		f := ctx.PushState(env, x.Src)
		env := ctx.Env(x.UpCount)
		a = append(a, remakeValue(v, nil, &adt.NodeLink{Node: env.Vertex}))
		a = append(a, remakeValue(v, nil, ctx.NewString(x.Label.SelectorString(ctx))))
		_ = ctx.PopState(f)
		op = SelectorOp

	case *adt.SelectorExpr:
		a = append(a, remakeValue(v, env, x.X))
		// A string selector is quoted.
		a = append(a, remakeValue(v, env, &adt.String{
			Str: x.Sel.SelectorString(v.idx),
		}))
		op = SelectorOp

	case *adt.IndexExpr:
		a = append(a, remakeValue(v, env, x.X))
		a = append(a, remakeValue(v, env, x.Index))
		op = IndexOp
	case *adt.SliceExpr:
		a = append(a, remakeValue(v, env, x.X))
		a = append(a, remakeValue(v, env, x.Lo))
		a = append(a, remakeValue(v, env, x.Hi))
		op = SliceOp
	case *adt.CallExpr:
		// Interpret "and" and "or" builtin semantically.
		if fn, ok := x.Fun.(*adt.Builtin); ok && len(x.Args) == 1 &&
			(fn.Name == "or" || fn.Name == "and") {

			iter, _ := remakeValue(v, env, x.Args[0]).List()
			for iter.Next() {
				a = append(a, iter.Value())
			}

			op = OrOp
			if fn.Name == "and" {
				op = AndOp
			}

			if len(a) == 0 {
				// Mimic semantics of builtin.
				switch op {
				case AndOp:
					a = append(a, remakeValue(v, env, &adt.Top{}))
				case OrOp:
					a = append(a, remakeValue(v, env, &adt.Bottom{
						Code: adt.IncompleteError,
						Err:  errors.Newf(x.Src.Fun.Pos(), "empty list in call to or"),
					}))
				}
				op = NoOp
			}
			break
		}
		a = append(a, remakeValue(v, env, x.Fun))
		for _, arg := range x.Args {
			a = append(a, remakeValue(v, env, arg))
		}
		op = CallOp
	case *adt.BuiltinValidator:
		a = append(a, remakeValue(v, env, x.Builtin))
		for _, arg := range x.Args {
			a = append(a, remakeValue(v, env, arg))
		}
		op = CallOp

	case *adt.StructLit:
		hasEmbed := false
		fields := []adt.Decl{}
		for _, d := range x.Decls {
			switch d.(type) {
			default:
				fields = append(fields, d)
			case adt.Value:
				fields = append(fields, d)
			case adt.Expr:
				hasEmbed = true
			}
		}

		if !hasEmbed {
			a = append(a, v)
			break
		}

		ctx := v.ctx()

		n := v.v

		if len(fields) > 0 {
			n = &adt.Vertex{
				Parent: v.v.Parent,
				Label:  v.v.Label,
			}

			s := &adt.StructLit{}
			if k := v.v.Kind(); k != adt.StructKind && k != BottomKind {
				// TODO: we should also add such a declaration for embeddings
				// of structs with definitions. However, this is currently
				// also not supported at the CUE level. If we do, it may be
				// best handled with a special mode of unification.
				s.Decls = append(s.Decls, &adt.BasicType{K: k})
			}
			s.Decls = append(s.Decls, fields...)
			c := adt.MakeRootConjunct(env, s)
			n.AddConjunct(c)
			n.Finalize(ctx)
			n.Parent = v.v.Parent
		}

		// Simulate old embeddings.
		envEmbed := &adt.Environment{
			Up:     env,
			Vertex: n,
		}

		for _, d := range x.Decls {
			switch x := d.(type) {
			case adt.Value:
			case adt.Expr:
				// embedding
				n := &adt.Vertex{Label: v.v.Label}
				c := adt.MakeRootConjunct(envEmbed, x)
				n.AddConjunct(c)
				n.Finalize(ctx)
				n.Parent = v.v.Parent
				a = append(a, makeValue(v.idx, n, v.parent_))
			}
		}

		// Could be done earlier, but keep struct with fields at end.
		if len(fields) > 0 {
			a = append(a, makeValue(v.idx, n, v.parent_))
		}

		if len(a) == 1 {
			return a[0].Expr()
		}
		op = adt.AndOp

	default:
		a = append(a, v)
	}
	return op, a
}