1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lsprpc implements a jsonrpc2.StreamServer that may be used to
// serve the LSP on a jsonrpc2 channel.
package lsprpc
import (
"context"
"encoding/json"
"fmt"
"log"
"net"
"os"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"cuelang.org/go/internal/golangorgx/gopls/protocol"
"cuelang.org/go/internal/golangorgx/gopls/protocol/command"
"cuelang.org/go/internal/golangorgx/gopls/settings"
"cuelang.org/go/internal/golangorgx/tools/event"
"cuelang.org/go/internal/golangorgx/tools/event/tag"
"cuelang.org/go/internal/golangorgx/tools/jsonrpc2"
"cuelang.org/go/internal/lsp/cache"
"cuelang.org/go/internal/lsp/server"
)
// Unique identifiers for client/server.
var serverIndex int64
// The streamServer type is a jsonrpc2.streamServer that handles incoming
// streams as a new LSP session, using a shared cache.
type streamServer struct {
cache *cache.Cache
// daemon controls whether or not to log new connections.
daemon bool
// optionsOverrides is passed to newly created workspaces.
optionsOverrides func(*settings.Options)
// serverForTest may be set to a test fake for testing.
serverForTest server.ServerWithID
}
// NewStreamServer creates a StreamServer using the shared cache.
func NewStreamServer(cache *cache.Cache, daemon bool, optionsFunc func(*settings.Options)) jsonrpc2.StreamServer {
return &streamServer{cache: cache, daemon: daemon, optionsOverrides: optionsFunc}
}
// ServeStream implements the jsonrpc2.StreamServer interface, by handling
// incoming streams using a new lsp server.
func (s *streamServer) ServeStream(ctx context.Context, conn jsonrpc2.Conn) error {
client := protocol.ClientDispatcher(conn)
svr := s.serverForTest
if svr == nil {
options := settings.DefaultOptions(s.optionsOverrides)
svr = server.New(s.cache, client, options)
}
svrID := svr.ID()
// Clients may or may not send a shutdown message. Make sure the server is
// shut down.
//
// TODO(ms): temporarily disabled because it introduces a
// data-race: this is a moment of genuine concurrency. It would be
// much better to inject the shutdown message onto the end of the
// jsonrpc2 stream somehow. For now, there's nothing important to
// do for shutdown, so disabling this is fine, and it solves the
// data-race. It's possible we could get away with moving the
// <-conn.Done() call within the defer, prior to the Shutdown call
// - that would provide the necessary memory barries. TBD.
//
// defer svr.Shutdown(ctx)
ctx = protocol.WithClient(ctx, client)
conn.Go(ctx,
protocol.Handlers(
handshaker(svrID, s.daemon,
protocol.ServerHandler(svr, jsonrpc2.MethodNotFound))))
if s.daemon {
log.Printf("Server %s: connected", svrID)
defer log.Printf("Server %s: exited", svrID)
}
<-conn.Done()
return conn.Err()
}
// A forwarder is a jsonrpc2.StreamServer that handles an LSP stream
// by forwarding it to a remote. This is used when the cuelsp process
// started by the editor is in the `-remote` mode, which means it
// finds and connects to a separate cuelsp daemon. In these cases, we
// still want the forwarder cuelsp to in some cases hijack the
// jsonrpc2 connection with the daemon.
type forwarder struct {
dialer *autoDialer
mu sync.Mutex
// Hold on to the server connection so that we can redo the handshake if any
// information changes.
serverConn jsonrpc2.Conn
serverID string
}
// NewForwarder creates a new forwarder (a [jsonrpc2.StreamServer]),
// ready to forward connections to the
// remote server specified by rawAddr. If provided and rawAddr indicates an
// 'automatic' address (starting with 'auto;'), argFunc may be used to start a
// remote server for the auto-discovered address.
func NewForwarder(rawAddr string, argFunc func(network, address string) []string) (jsonrpc2.StreamServer, error) {
dialer, err := newAutoDialer(rawAddr, argFunc)
if err != nil {
return nil, err
}
fwd := &forwarder{
dialer: dialer,
}
return fwd, nil
}
// QueryServerState returns a JSON-encodable struct describing the state of the named server.
func QueryServerState(ctx context.Context, addr string) (any, error) {
serverConn, err := dialRemote(ctx, addr)
if err != nil {
return nil, err
}
var state serverState
if err := protocol.Call(ctx, serverConn, serversMethod, nil, &state); err != nil {
return nil, fmt.Errorf("querying server state: %w", err)
}
return &state, nil
}
// dialRemote is used for making calls into the cuelsp daemon. addr should be a
// URL, possibly on the synthetic 'auto' network (e.g. tcp://..., unix://...,
// or auto://...).
func dialRemote(ctx context.Context, addr string) (jsonrpc2.Conn, error) {
network, address := ParseAddr(addr)
if network == autoNetwork {
cuePath, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("getting cue path: %w", err)
}
network, address = autoNetworkAddress(cuePath, address)
}
netConn, err := net.DialTimeout(network, address, 5*time.Second)
if err != nil {
return nil, fmt.Errorf("dialing remote: %w", err)
}
serverConn := jsonrpc2.NewConn(jsonrpc2.NewHeaderStream(netConn))
serverConn.Go(ctx, jsonrpc2.MethodNotFound)
return serverConn, nil
}
// ExecuteCommand connects to the named server, sends it a
// workspace/executeCommand request (with command 'id' and arguments
// JSON encoded in 'request'), and populates the result variable.
func ExecuteCommand(ctx context.Context, addr string, id string, request, result any) error {
serverConn, err := dialRemote(ctx, addr)
if err != nil {
return err
}
args, err := command.MarshalArgs(request)
if err != nil {
return err
}
params := protocol.ExecuteCommandParams{
Command: id,
Arguments: args,
}
return protocol.Call(ctx, serverConn, "workspace/executeCommand", params, result)
}
// ServeStream dials the forwarder remote and binds the remote to serve the LSP
// on the incoming stream.
func (f *forwarder) ServeStream(ctx context.Context, clientConn jsonrpc2.Conn) error {
client := protocol.ClientDispatcher(clientConn)
netConn, err := f.dialer.dialNet(ctx)
if err != nil {
return fmt.Errorf("forwarder: connecting to remote: %w", err)
}
serverConn := jsonrpc2.NewConn(jsonrpc2.NewHeaderStream(netConn))
server := protocol.ServerDispatcher(serverConn)
// Forward between connections.
serverConn.Go(ctx,
protocol.Handlers(
protocol.ClientHandler(client,
jsonrpc2.MethodNotFound)))
// Don't run the clientConn yet, so that we can complete the handshake before
// processing any client messages.
// Do a handshake with the server instance to exchange debug information.
index := atomic.AddInt64(&serverIndex, 1)
f.mu.Lock()
f.serverConn = serverConn
f.serverID = strconv.FormatInt(index, 10)
f.mu.Unlock()
f.handshake(ctx)
clientConn.Go(ctx,
protocol.Handlers(
protocol.ServerHandler(server, jsonrpc2.MethodNotFound)))
select {
case <-serverConn.Done():
clientConn.Close()
case <-clientConn.Done():
serverConn.Close()
}
err = nil
if serverConn.Err() != nil {
err = fmt.Errorf("remote disconnected: %v", serverConn.Err())
} else if clientConn.Err() != nil {
err = fmt.Errorf("client disconnected: %v", clientConn.Err())
}
event.Log(ctx, fmt.Sprintf("forwarder: exited with error: %v", err))
return err
}
// TODO(rfindley): remove this handshaking in favor of middleware.
func (f *forwarder) handshake(ctx context.Context) {
// This call to os.Executable is redundant, and will be eliminated by the
// transition to the V2 API.
hreq := handshakeRequest{ServerID: f.serverID}
var hresp handshakeResponse
if err := protocol.Call(ctx, f.serverConn, handshakeMethod, hreq, &hresp); err != nil {
// TODO(rfindley): at some point in the future we should return an error
// here. Handshakes have become functional in nature.
event.Error(ctx, "forwarder: cuelsp handshake failed", err)
}
event.Log(ctx, "New server",
tag.NewServer.Of(f.serverID),
tag.ServerID.Of(hresp.ServerID),
)
}
func ConnectToRemote(ctx context.Context, addr string) (net.Conn, error) {
dialer, err := newAutoDialer(addr, nil)
if err != nil {
return nil, err
}
return dialer.dialNet(ctx)
}
// A handshakeRequest identifies a client to the LSP server.
type handshakeRequest struct {
// ServerID is the ID of the server on the client. This should
// usually be 0.
ServerID string `json:"serverID"`
}
// A handshakeResponse is returned by the LSP server to tell the LSP
// client information about its server.
type handshakeResponse struct {
// ServerID is the server server associated with the client.
ServerID string `json:"serverID"`
}
// clientServer identifies a current client LSP server on the
// server.
type clientServer struct {
ServerID string `json:"serverID"`
}
// serverState holds information about the cuelsp daemon process.
type serverState struct {
CurrentServerID string `json:"currentServerID"`
}
const (
handshakeMethod = "cuelsp/handshake"
serversMethod = "cuelsp/servers"
)
func handshaker(svrID string, logHandshakes bool, handler jsonrpc2.Handler) jsonrpc2.Handler {
return func(ctx context.Context, reply jsonrpc2.Replier, r jsonrpc2.Request) error {
switch r.Method() {
case handshakeMethod:
// We log.Printf in this handler, rather than event.Log when we want logs
// to go to the daemon log rather than being reflected back to the
// client.
var req handshakeRequest
if err := json.Unmarshal(r.Params(), &req); err != nil {
if logHandshakes {
log.Printf("Error processing handshake for server %s: %v", svrID, err)
}
sendError(ctx, reply, err)
return nil
}
if logHandshakes {
log.Printf("Server %s: got handshake.", svrID)
}
event.Log(ctx, "Handshake server update",
tag.ServerID.Of(req.ServerID),
)
resp := handshakeResponse{
ServerID: svrID,
}
return reply(ctx, resp, nil)
case serversMethod:
resp := serverState{
CurrentServerID: svrID,
}
return reply(ctx, resp, nil)
}
return handler(ctx, reply, r)
}
}
func sendError(ctx context.Context, reply jsonrpc2.Replier, err error) {
err = fmt.Errorf("%v: %w", err, jsonrpc2.ErrParse)
if err := reply(ctx, nil, err); err != nil {
event.Error(ctx, "", err)
}
}
// ParseAddr parses the address of a cuelsp remote.
// TODO(rFindley): further document this syntax, and allow URI-style remote
// addresses such as "auto://...".
func ParseAddr(listen string) (network string, address string) {
// Allow passing just -remote=auto, as a shorthand for using automatic remote
// resolution.
if listen == autoNetwork {
return autoNetwork, ""
}
if parts := strings.SplitN(listen, ";", 2); len(parts) == 2 {
return parts[0], parts[1]
}
return "tcp", listen
}
|