File: set_test.go

package info (click to toggle)
golang-github-cue-lang-cue 0.14.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,644 kB
  • sloc: makefile: 20; sh: 15
file content (165 lines) | stat: -rw-r--r-- 4,783 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2025 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package intset

import (
	"fmt"
	"math/bits"
	"math/rand/v2"
	"testing"
	"time"
)

// populate fills the set with n sequential values (0..n-1) and verifies
// insertion invariants along the way.
func populate[T Int](t *testing.T, n int) *Set[T] {
	t.Helper()
	s := New[T](n / 2) // intentionally small to exercise growth
	for i := 0; i < n; i++ {
		if !s.Add(T(i)) {
			t.Fatalf("insert %d reported duplicate", i)
		}
	}
	if got := s.Len(); got != n {
		t.Fatalf("Len=%d, want %d", got, n)
	}
	return s
}

// assertPresent asserts that Has(v) equals want for every v in vals.
func assertPresent[T Int](t *testing.T, s *Set[T], vals []T, want bool) {
	t.Helper()
	for _, v := range vals {
		if got := s.Has(v); got != want {
			t.Fatalf("Has(%v)=%v, want %v", v, got, want)
		}
	}
}

func TestBasicAddHasLen(t *testing.T) {
	s := New[uint32](8)
	if s.Len() != 0 {
		t.Fatalf("new set length want 0 got %d", s.Len())
	}
	if !s.Add(10) {
		t.Fatalf("expected first insertion true")
	}
	if s.Len() != 1 || !s.Has(10) {
		t.Fatalf("basic invariants failed")
	}
	if s.Add(10) {
		t.Fatalf("duplicate insertion should return false")
	}
	if s.Len() != 1 {
		t.Fatalf("duplicate insertion changed size")
	}
}

func TestClear(t *testing.T) {
	s := populate[uint16](t, 50)
	s.Clear()
	if s.Len() != 0 {
		t.Fatalf("Len after Clear() = %d, want 0", s.Len())
	}
	assertPresent(t, s, []uint16{0, 25, 49}, false)
	// ensure we can reuse without reallocation or corruption
	for i := 0; i < 20; i++ {
		s.Add(uint16(i))
	}
	if s.Len() != 20 {
		t.Fatalf("Len after reuse = %d, want 20", s.Len())
	}
}

func TestRehashGrowth(t *testing.T) {
	// create a small set to guarantee multiple growth events
	initialCap := 8
	s := New[uint32](initialCap)
	target := 10_000
	for i := 0; i < target; i++ {
		s.Add(uint32(i))
	}
	if s.Len() != target {
		t.Fatalf("after bulk add Len=%d want %d", s.Len(), target)
	}
	// verify every element is present
	for i := 0; i < target; i++ {
		if !s.Has(uint32(i)) {
			t.Fatalf("missing key %d after growth", i)
		}
	}
	// internal capacity should be power-of-two
	if bits.OnesCount(uint(len(s.keys))) != 1 {
		t.Fatalf("internal slice len=%d, not power-of-two", len(s.keys))
	}
}

func TestMultipleIntegerSizes(t *testing.T) {
	t.Run("uint8", func(t *testing.T) { populate[uint8](t, 200) })
	t.Run("uint16", func(t *testing.T) { populate[uint16](t, 1_000) })
	t.Run("uint32", func(t *testing.T) { populate[uint32](t, 10_000) })
	t.Run("uint64", func(t *testing.T) { populate[uint64](t, 1_000) })
}

func TestNextPow2(t *testing.T) {
	tests := []struct{ in, want int }{{0, 1}, {1, 1}, {2, 2}, {3, 4}, {7, 8}, {8, 8}, {9, 16}, {1023, 1024}, {1024, 1024}, {1025, 2048}}
	for _, test := range tests {
		t.Run(fmt.Sprint(test.in), func(t *testing.T) {
			if got := nextPow2(test.in); got != test.want {
				t.Fatalf("nextPow2(%d)=%d, want %d", test.in, got, test.want)
			}
		})
	}
}

// TestRandomizedBehaviour performs a behavioural, property-style test on a
// large batch of pseudo-random keys. It uses an auxiliary Go map to model the
// expected behaviour and cross-checks all edge cases, exercising rehash logic
// many times along the way.
func TestRandomizedBehaviour(t *testing.T) {
	const N = 100_000
	seed := uint64(time.Now().UnixNano())
	t.Logf("random seed %d", seed)
	randGen := rand.New(rand.NewPCG(seed, seed))

	s := New[uint32](8) // deliberately tiny to trigger dozens of rehashes
	model := make(map[uint32]struct{})

	for i := 0; i < N; i++ {
		k := randGen.Uint32()
		added := s.Add(k)
		_, exists := model[k]
		if added == exists {
			t.Fatalf("Add(%d) reported %v, expected %v (iteration %d)", k, added, !exists, i)
		}
		model[k] = struct{}{}
		if !s.Has(k) {
			t.Fatalf("Has(%d)=false immediately after add", k)
		}
		if s.Len() != len(model) {
			t.Fatalf("Len mismatch at i=%d: set=%d, model=%d", i, s.Len(), len(model))
		}
	}
	for k := range model {
		if !s.Has(k) {
			t.Fatalf("Has(%d)=false at end, should be true", k)
		}
	}

	// sanity check on internal capacity: should be power of two and at least len/model * 4/3 (load factor)
	if bits.OnesCount(uint(len(s.keys))) != 1 {
		t.Fatalf("internal slice len=%d, not power of two", len(s.keys))
	}
}