1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
// Copyright 2019 CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package list contains functions for manipulating and examining lists.
package list
import (
"fmt"
"slices"
"cuelang.org/go/cue"
"cuelang.org/go/cue/errors"
"cuelang.org/go/cue/token"
"cuelang.org/go/internal/core/adt"
"cuelang.org/go/internal/core/eval"
"cuelang.org/go/internal/pkg"
"cuelang.org/go/internal/types"
"cuelang.org/go/internal/value"
)
// Drop reports the suffix of list x after the first n elements,
// or [] if n > len(x).
//
// For instance:
//
// Drop([1, 2, 3, 4], 2)
//
// results in
//
// [3, 4]
func Drop(x []cue.Value, n int) ([]cue.Value, error) {
if n < 0 {
return nil, fmt.Errorf("negative index")
}
if n > len(x) {
return []cue.Value{}, nil
}
return x[n:], nil
}
// TODO: disable Flatten until we know the right default for depth.
// The right time to determine is at least some point after the query
// extensions are introduced, which may provide flatten functionality
// natively.
//
// // Flatten reports a flattened sequence of the list xs by expanding any elements
// // that are lists.
// //
// // For instance:
// //
// // Flatten([1, [[2, 3], []], [4]])
// //
// // results in
// //
// // [1, 2, 3, 4]
// //
// func Flatten(xs cue.Value) ([]cue.Value, error) {
// var flatten func(cue.Value) ([]cue.Value, error)
// flatten = func(xs cue.Value) ([]cue.Value, error) {
// var res []cue.Value
// iter, err := xs.List()
// if err != nil {
// return nil, err
// }
// for iter.Next() {
// val := iter.Value()
// if val.Kind() == cue.ListKind {
// vals, err := flatten(val)
// if err != nil {
// return nil, err
// }
// res = append(res, vals...)
// } else {
// res = append(res, val)
// }
// }
// return res, nil
// }
// return flatten(xs)
// }
// FlattenN reports a flattened sequence of the list xs by expanding any elements
// depth levels deep. If depth is negative all elements are expanded.
//
// For instance:
//
// FlattenN([1, [[2, 3], []], [4]], 1)
//
// results in
//
// [1, [2, 3], [], 4]
func FlattenN(xs cue.Value, depth int) ([]cue.Value, error) {
var flattenN func(cue.Value, int) ([]cue.Value, error)
flattenN = func(xs cue.Value, depth int) ([]cue.Value, error) {
var res []cue.Value
iter, err := xs.List()
if err != nil {
return nil, err
}
for iter.Next() {
val, _ := iter.Value().Default()
if val.Kind() == cue.ListKind && depth != 0 {
d := depth - 1
values, err := flattenN(val, d)
if err != nil {
return nil, err
}
res = append(res, values...)
} else {
res = append(res, val)
}
}
return res, nil
}
return flattenN(xs, depth)
}
// Repeat returns a new list consisting of count copies of list x.
//
// For instance:
//
// Repeat([1, 2], 2)
//
// results in
//
// [1, 2, 1, 2]
func Repeat(x []cue.Value, count int) ([]cue.Value, error) {
if count < 0 {
return nil, fmt.Errorf("negative count")
}
return slices.Repeat(x, count), nil
}
// Concat takes a list of lists and concatenates them.
//
// Concat([a, b, c]) is equivalent to
//
// [for x in a {x}, for x in b {x}, for x in c {x}]
func Concat(a []cue.Value) ([]cue.Value, error) {
var res []cue.Value
for _, e := range a {
iter, err := e.List()
if err != nil {
return nil, err
}
for iter.Next() {
res = append(res, iter.Value())
}
}
return res, nil
}
// Take reports the prefix of length n of list x, or x itself if n > len(x).
//
// For instance:
//
// Take([1, 2, 3, 4], 2)
//
// results in
//
// [1, 2]
func Take(x []cue.Value, n int) ([]cue.Value, error) {
if n < 0 {
return nil, fmt.Errorf("negative index")
}
if n > len(x) {
return x, nil
}
return x[:n], nil
}
// Slice extracts the consecutive elements from list x starting from position i
// up till, but not including, position j, where 0 <= i < j <= len(x).
//
// For instance:
//
// Slice([1, 2, 3, 4], 1, 3)
//
// results in
//
// [2, 3]
func Slice(x []cue.Value, i, j int) ([]cue.Value, error) {
if i < 0 {
return nil, fmt.Errorf("negative index")
}
if i > j {
return nil, fmt.Errorf("invalid index: %v > %v", i, j)
}
if i > len(x) {
return nil, fmt.Errorf("slice bounds out of range")
}
if j > len(x) {
return nil, fmt.Errorf("slice bounds out of range")
}
return x[i:j], nil
}
// Reverse reverses a list.
//
// For instance:
//
// Reverse([1, 2, 3, 4])
//
// results in
//
// [4, 3, 2, 1]
func Reverse(x []cue.Value) []cue.Value {
slices.Reverse(x)
return x
}
// MinItems reports whether a has at least n items.
func MinItems(list pkg.List, n int) (bool, error) {
count := len(list.Elems())
if count >= n {
return true, nil
}
code := adt.EvalError
if list.IsOpen() {
code = adt.IncompleteError
}
return false, pkg.ValidationError{B: &adt.Bottom{
Code: code,
Err: errors.Newf(token.NoPos, "len(list) < MinItems(%[2]d) (%[1]d < %[2]d)", count, n),
}}
}
// MaxItems reports whether a has at most n items.
func MaxItems(list pkg.List, n int) (bool, error) {
count := len(list.Elems())
if count > n {
return false, pkg.ValidationError{B: &adt.Bottom{
Code: adt.EvalError,
Err: errors.Newf(token.NoPos, "len(list) > MaxItems(%[2]d) (%[1]d > %[2]d)", count, n),
}}
}
return true, nil
}
// UniqueItems reports whether all elements in the list are unique.
func UniqueItems(a []cue.Value) (bool, error) {
if len(a) <= 1 {
return true, nil
}
// TODO(perf): this is an O(n^2) algorithm. We should make it O(n log n).
// This could be done as follows:
// - Create a list with some hash value for each element x in a as well
// alongside the value of x itself.
// - Sort the elements based on the hash value.
// - Compare subsequent elements to see if they are equal.
var tv types.Value
a[0].Core(&tv)
ctx := eval.NewContext(tv.R, tv.V)
posX, posY := 0, 0
code := adt.IncompleteError
outer:
for i, x := range a {
_, vx := value.ToInternal(x)
for j := i + 1; j < len(a); j++ {
_, vy := value.ToInternal(a[j])
if adt.Equal(ctx, vx, vy, adt.RegularOnly) {
posX, posY = i, j
if adt.IsFinal(vy) {
code = adt.EvalError
break outer
}
}
}
}
if posX == posY {
return true, nil
}
var err errors.Error
switch x := a[posX].Value(); x.Kind() {
case cue.BoolKind, cue.NullKind, cue.IntKind, cue.FloatKind, cue.StringKind, cue.BytesKind:
err = errors.Newf(token.NoPos, "equal value (%v) at position %d and %d", x, posX, posY)
default:
err = errors.Newf(token.NoPos, "equal values at position %d and %d", posX, posY)
}
return false, pkg.ValidationError{B: &adt.Bottom{
Code: code,
Err: err,
}}
}
// Contains reports whether v is contained in a. The value must be a
// comparable value.
func Contains(a []cue.Value, v cue.Value) bool {
return slices.ContainsFunc(a, v.Equals)
}
// MatchN is a validator that checks that the number of elements in the given
// list that unifies with the schema "matchValue" matches "n".
// "n" may be a number constraint and does not have to be a concrete number.
// Likewise, "matchValue" will usually be a non-concrete value.
func MatchN(list []cue.Value, n pkg.Schema, matchValue pkg.Schema) (bool, error) {
c := value.OpContext(n)
return matchN(c, list, n, matchValue)
}
// matchN is the actual implementation of MatchN.
func matchN(c *adt.OpContext, list []cue.Value, n pkg.Schema, matchValue pkg.Schema) (bool, error) {
var nmatch int64
for _, w := range list {
vx := adt.Unify(c, value.Vertex(matchValue), value.Vertex(w))
x := value.Make(c, vx)
if x.Validate(cue.Final()) == nil {
nmatch++
}
}
ctx := value.Context(c)
if err := n.Unify(ctx.Encode(nmatch)).Err(); err != nil {
return false, pkg.ValidationError{B: &adt.Bottom{
Code: adt.EvalError,
Err: errors.Newf(
token.NoPos,
"number of matched elements is %d: does not satisfy %v",
nmatch,
n,
),
}}
}
return true, nil
}
|