1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
// Copyright 2018 The CUE Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
import (
"math"
"github.com/cockroachdb/apd/v3"
"cuelang.org/go/internal"
)
// Abs returns the absolute value of x.
//
// Special case: Abs(±Inf) = +Inf
func Abs(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Abs(&d, x)
return &d, err
}
// Acosh returns the inverse hyperbolic cosine of x.
//
// Special cases are:
//
// Acosh(+Inf) = +Inf
// Acosh(x) = NaN if x < 1
// Acosh(NaN) = NaN
func Acosh(x float64) float64 {
return math.Acosh(x)
}
// Asin returns the arcsine, in radians, of x.
//
// Special cases are:
//
// Asin(±0) = ±0
// Asin(x) = NaN if x < -1 or x > 1
func Asin(x float64) float64 {
return math.Asin(x)
}
// Acos returns the arccosine, in radians, of x.
//
// Special case is:
//
// Acos(x) = NaN if x < -1 or x > 1
func Acos(x float64) float64 {
return math.Acos(x)
}
// Asinh returns the inverse hyperbolic sine of x.
//
// Special cases are:
//
// Asinh(±0) = ±0
// Asinh(±Inf) = ±Inf
// Asinh(NaN) = NaN
func Asinh(x float64) float64 {
return math.Asinh(x)
}
// Atan returns the arctangent, in radians, of x.
//
// Special cases are:
//
// Atan(±0) = ±0
// Atan(±Inf) = ±Pi/2
func Atan(x float64) float64 {
return math.Atan(x)
}
// Atan2 returns the arc tangent of y/x, using
// the signs of the two to determine the quadrant
// of the return value.
//
// Special cases are (in order):
//
// Atan2(y, NaN) = NaN
// Atan2(NaN, x) = NaN
// Atan2(+0, x>=0) = +0
// Atan2(-0, x>=0) = -0
// Atan2(+0, x<=-0) = +Pi
// Atan2(-0, x<=-0) = -Pi
// Atan2(y>0, 0) = +Pi/2
// Atan2(y<0, 0) = -Pi/2
// Atan2(+Inf, +Inf) = +Pi/4
// Atan2(-Inf, +Inf) = -Pi/4
// Atan2(+Inf, -Inf) = 3Pi/4
// Atan2(-Inf, -Inf) = -3Pi/4
// Atan2(y, +Inf) = 0
// Atan2(y>0, -Inf) = +Pi
// Atan2(y<0, -Inf) = -Pi
// Atan2(+Inf, x) = +Pi/2
// Atan2(-Inf, x) = -Pi/2
func Atan2(y, x float64) float64 {
return math.Atan2(y, x)
}
// Atanh returns the inverse hyperbolic tangent of x.
//
// Special cases are:
//
// Atanh(1) = +Inf
// Atanh(±0) = ±0
// Atanh(-1) = -Inf
// Atanh(x) = NaN if x < -1 or x > 1
// Atanh(NaN) = NaN
func Atanh(x float64) float64 {
return math.Atanh(x)
}
// Cbrt returns the cube root of x.
//
// Special cases are:
//
// Cbrt(±0) = ±0
// Cbrt(±Inf) = ±Inf
// Cbrt(NaN) = NaN
func Cbrt(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Cbrt(&d, x)
return &d, err
}
// Mathematical constants.
const (
E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113
Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796
Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162
Log2E = 1 / Ln2
Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392
Log10E = 1 / Ln10
)
// Copysign returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y *internal.Decimal) *internal.Decimal {
var d internal.Decimal
d.Set(x)
d.Negative = y.Negative
return &d
}
var zero = apd.New(0, 0)
// Dim returns the maximum of x-y or 0.
//
// Special cases are:
//
// Dim(+Inf, +Inf) = NaN
// Dim(-Inf, -Inf) = NaN
// Dim(x, NaN) = Dim(NaN, x) = NaN
func Dim(x, y *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Sub(&d, x, y)
if err != nil {
return nil, err
}
if d.Negative {
return zero, nil
}
return &d, nil
}
// Erf returns the error function of x.
//
// Special cases are:
//
// Erf(+Inf) = 1
// Erf(-Inf) = -1
// Erf(NaN) = NaN
func Erf(x float64) float64 {
return math.Erf(x)
}
// Erfc returns the complementary error function of x.
//
// Special cases are:
//
// Erfc(+Inf) = 0
// Erfc(-Inf) = 2
// Erfc(NaN) = NaN
func Erfc(x float64) float64 {
return math.Erfc(x)
}
// Erfinv returns the inverse error function of x.
//
// Special cases are:
//
// Erfinv(1) = +Inf
// Erfinv(-1) = -Inf
// Erfinv(x) = NaN if x < -1 or x > 1
// Erfinv(NaN) = NaN
func Erfinv(x float64) float64 {
return math.Erfinv(x)
}
// Erfcinv returns the inverse of Erfc(x).
//
// Special cases are:
//
// Erfcinv(0) = +Inf
// Erfcinv(2) = -Inf
// Erfcinv(x) = NaN if x < 0 or x > 2
// Erfcinv(NaN) = NaN
func Erfcinv(x float64) float64 {
return math.Erfcinv(x)
}
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
//
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
//
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Exp(&d, x)
return &d, err
}
var two = apd.New(2, 0)
// Exp2 returns 2**x, the base-2 exponential of x.
//
// Special cases are the same as Exp.
func Exp2(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Pow(&d, two, x)
return &d, err
}
// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
// It is more accurate than Exp(x) - 1 when x is near zero.
//
// Special cases are:
//
// Expm1(+Inf) = +Inf
// Expm1(-Inf) = -1
// Expm1(NaN) = NaN
//
// Very large values overflow to -1 or +Inf.
func Expm1(x float64) float64 {
return math.Expm1(x)
}
// Gamma returns the Gamma function of x.
//
// Special cases are:
//
// Gamma(+Inf) = +Inf
// Gamma(+0) = +Inf
// Gamma(-0) = -Inf
// Gamma(x) = NaN for integer x < 0
// Gamma(-Inf) = NaN
// Gamma(NaN) = NaN
func Gamma(x float64) float64 {
return math.Gamma(x)
}
// Hypot returns Sqrt(p*p + q*q), taking care to avoid
// unnecessary overflow and underflow.
//
// Special cases are:
//
// Hypot(±Inf, q) = +Inf
// Hypot(p, ±Inf) = +Inf
// Hypot(NaN, q) = NaN
// Hypot(p, NaN) = NaN
func Hypot(p, q float64) float64 {
return math.Hypot(p, q)
}
// J0 returns the order-zero Bessel function of the first kind.
//
// Special cases are:
//
// J0(±Inf) = 0
// J0(0) = 1
// J0(NaN) = NaN
func J0(x float64) float64 {
return math.J0(x)
}
// Y0 returns the order-zero Bessel function of the second kind.
//
// Special cases are:
//
// Y0(+Inf) = 0
// Y0(0) = -Inf
// Y0(x < 0) = NaN
// Y0(NaN) = NaN
func Y0(x float64) float64 {
return math.Y0(x)
}
// J1 returns the order-one Bessel function of the first kind.
//
// Special cases are:
//
// J1(±Inf) = 0
// J1(NaN) = NaN
func J1(x float64) float64 {
return math.J1(x)
}
// Y1 returns the order-one Bessel function of the second kind.
//
// Special cases are:
//
// Y1(+Inf) = 0
// Y1(0) = -Inf
// Y1(x < 0) = NaN
// Y1(NaN) = NaN
func Y1(x float64) float64 {
return math.Y1(x)
}
// Jn returns the order-n Bessel function of the first kind.
//
// Special cases are:
//
// Jn(n, ±Inf) = 0
// Jn(n, NaN) = NaN
func Jn(n int, x float64) float64 {
return math.Jn(n, x)
}
// Yn returns the order-n Bessel function of the second kind.
//
// Special cases are:
//
// Yn(n, +Inf) = 0
// Yn(n ≥ 0, 0) = -Inf
// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
// Yn(n, x < 0) = NaN
// Yn(n, NaN) = NaN
func Yn(n int, x float64) float64 {
return math.Yn(n, x)
}
// Ldexp is the inverse of Frexp.
// It returns frac × 2**exp.
//
// Special cases are:
//
// Ldexp(±0, exp) = ±0
// Ldexp(±Inf, exp) = ±Inf
// Ldexp(NaN, exp) = NaN
func Ldexp(frac float64, exp int) float64 {
return math.Ldexp(frac, exp)
}
// Log returns the natural logarithm of x.
//
// Special cases are:
//
// Log(+Inf) = +Inf
// Log(0) = -Inf
// Log(x < 0) = NaN
// Log(NaN) = NaN
func Log(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Ln(&d, x)
return &d, err
}
// Log10 returns the decimal logarithm of x.
// The special cases are the same as for Log.
func Log10(x *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Log10(&d, x)
return &d, err
}
// Log2 returns the binary logarithm of x.
// The special cases are the same as for Log.
func Log2(x *internal.Decimal) (*internal.Decimal, error) {
var d, ln2 internal.Decimal
_, _ = internal.BaseContext.Ln(&ln2, two)
_, err := internal.BaseContext.Ln(&d, x)
if err != nil {
return &d, err
}
_, err = internal.BaseContext.Quo(&d, &d, &ln2)
return &d, err
}
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than Log(1 + x) when x is near zero.
//
// Special cases are:
//
// Log1p(+Inf) = +Inf
// Log1p(±0) = ±0
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func Log1p(x float64) float64 {
return math.Log1p(x)
}
// Logb returns the binary exponent of x.
//
// Special cases are:
//
// Logb(±Inf) = +Inf
// Logb(0) = -Inf
// Logb(NaN) = NaN
func Logb(x float64) float64 {
return math.Logb(x)
}
// Ilogb returns the binary exponent of x as an integer.
//
// Special cases are:
//
// Ilogb(±Inf) = MaxInt32
// Ilogb(0) = MinInt32
// Ilogb(NaN) = MaxInt32
func Ilogb(x float64) int {
return math.Ilogb(x)
}
// Mod returns the floating-point remainder of x/y.
// The magnitude of the result is less than y and its
// sign agrees with that of x.
//
// Special cases are:
//
// Mod(±Inf, y) = NaN
// Mod(NaN, y) = NaN
// Mod(x, 0) = NaN
// Mod(x, ±Inf) = x
// Mod(x, NaN) = NaN
func Mod(x, y float64) float64 {
return math.Mod(x, y)
}
// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
//
// Pow(x, ±0) = 1 for any x
// Pow(1, y) = 1 for any y
// Pow(x, 1) = x for any x
// Pow(NaN, y) = NaN
// Pow(x, NaN) = NaN
// Pow(±0, y) = ±Inf for y an odd integer < 0
// Pow(±0, -Inf) = +Inf
// Pow(±0, +Inf) = +0
// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
// Pow(±0, y) = ±0 for y an odd integer > 0
// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
// Pow(-1, ±Inf) = 1
// Pow(x, +Inf) = +Inf for |x| > 1
// Pow(x, -Inf) = +0 for |x| > 1
// Pow(x, +Inf) = +0 for |x| < 1
// Pow(x, -Inf) = +Inf for |x| < 1
// Pow(+Inf, y) = +Inf for y > 0
// Pow(+Inf, y) = +0 for y < 0
// Pow(-Inf, y) = Pow(-0, -y)
// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow(x, y *internal.Decimal) (*internal.Decimal, error) {
var d internal.Decimal
_, err := internal.BaseContext.Pow(&d, x, y)
return &d, err
}
// Pow10 returns 10**n, the base-10 exponential of n.
func Pow10(n int32) *internal.Decimal {
return apd.New(1, n)
}
// Remainder returns the IEEE 754 floating-point remainder of x/y.
//
// Special cases are:
//
// Remainder(±Inf, y) = NaN
// Remainder(NaN, y) = NaN
// Remainder(x, 0) = NaN
// Remainder(x, ±Inf) = x
// Remainder(x, NaN) = NaN
func Remainder(x, y float64) float64 {
return math.Remainder(x, y)
}
// Signbit reports whether x is negative or negative zero.
func Signbit(x *internal.Decimal) bool {
return x.Negative
}
// Cos returns the cosine of the radian argument x.
//
// Special cases are:
//
// Cos(±Inf) = NaN
// Cos(NaN) = NaN
func Cos(x float64) float64 {
return math.Cos(x)
}
// Sin returns the sine of the radian argument x.
//
// Special cases are:
//
// Sin(±0) = ±0
// Sin(±Inf) = NaN
// Sin(NaN) = NaN
func Sin(x float64) float64 {
return math.Sin(x)
}
// Sinh returns the hyperbolic sine of x.
//
// Special cases are:
//
// Sinh(±0) = ±0
// Sinh(±Inf) = ±Inf
// Sinh(NaN) = NaN
func Sinh(x float64) float64 {
return math.Sinh(x)
}
// Cosh returns the hyperbolic cosine of x.
//
// Special cases are:
//
// Cosh(±0) = 1
// Cosh(±Inf) = +Inf
// Cosh(NaN) = NaN
func Cosh(x float64) float64 {
return math.Cosh(x)
}
// Sqrt returns the square root of x.
//
// Special cases are:
//
// Sqrt(+Inf) = +Inf
// Sqrt(±0) = ±0
// Sqrt(x < 0) = NaN
// Sqrt(NaN) = NaN
func Sqrt(x float64) float64 {
return math.Sqrt(x)
}
// Tan returns the tangent of the radian argument x.
//
// Special cases are:
//
// Tan(±0) = ±0
// Tan(±Inf) = NaN
// Tan(NaN) = NaN
func Tan(x float64) float64 {
return math.Tan(x)
}
// Tanh returns the hyperbolic tangent of x.
//
// Special cases are:
//
// Tanh(±0) = ±0
// Tanh(±Inf) = ±1
// Tanh(NaN) = NaN
func Tanh(x float64) float64 {
return math.Tanh(x)
}
|