1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
// Copyright 2014 The bufs Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bufs implements a simple buffer cache.
//
// The intended use scheme is like:
//
// type Foo struct {
// buffers bufs.Buffers
// ...
// }
//
// // Bar can call Qux, but not the other way around (in this example).
// const maxFooDepth = 2
//
// func NewFoo() *Foo {
// return &Foo{buffers: bufs.New(maxFooDepth), ...}
// }
//
// func (f *Foo) Bar(n int) {
// buf := f.buffers.Alloc(n) // needed locally for computation and/or I/O
// defer f.buffers.Free()
// ...
// f.Qux(whatever)
// }
//
// func (f *Foo) Qux(n int) {
// buf := f.buffers.Alloc(n) // needed locally for computation and/or I/O
// defer f.buffers.Free()
// ...
// }
//
// The whole idea behind 'bufs' is that when calling e.g. Foo.Bar N times, then
// normally, without using 'bufs', there will be 2*N (in this example) []byte
// buffers allocated. While using 'bufs', only 2 buffers (in this example)
// will ever be created. For large N it can be a substantial difference.
//
// It's not a good idea to use Buffers to cache too big buffers. The cost of
// having a cached buffer is that the buffer is naturally not eligible for
// garbage collection. Of course, that holds only while the Foo instance is
// reachable, in the above example.
//
// The buffer count limit is intentionally "hard" (read panicking), although
// configurable in New(). The rationale is to prevent recursive calls, using
// Alloc, to cause excessive, "static" memory consumption. Tune the limit
// carefully or do not use Buffers from within [mutually] recursive functions
// where the nesting depth is not realistically bounded to some rather small
// number.
//
// Buffers cannot guarantee improvements to you program performance. There may
// be a gain in case where they fit well. Firm grasp on what your code is
// actually doing, when and in what order is essential to proper use of
// Buffers. It's _highly_ recommended to first do profiling and memory
// profiling before even thinking about using 'bufs'. The real world example,
// and cause for this package, was a first correct, yet no optimizations done
// version of a program; producing few MB of useful data while allocating 20+GB
// of memory. Of course the garbage collector properly kicked in, yet the
// memory abuse caused ~80+% of run time to be spent memory management. The
// program _was_ expected to be slow in its still development phase, but the
// bottleneck was guessed to be in I/O. Actually the hard disk was waiting for
// the billions bytes being allocated and zeroed. Garbage collect on low
// memory, rinse and repeat.
//
// In the provided tests, TestFoo and TestFooBufs do the same simulated work,
// except the later uses Buffers while the former does not. Suggested test runs
// which show the differences:
//
// $ go test -bench . -benchmem
//
// or
//
// $ go test -c
// $ ./bufs.test -test.v -test.run Foo -test.memprofile mem.out -test.memprofilerate 1
// $ go tool pprof bufs.test mem.out --alloc_space --nodefraction 0.0001 --edgefraction 0 -web
// $ # Note: Foo vs FooBufs allocated memory is in hundreds of MBs vs 8 kB.
//
// or
//
// $ make demo # same as all of the above
//
//
// NOTE: Alloc/Free calls must be properly nested in the same way as in for
// example BeginTransaction/EndTransaction pairs. If your code can panic then
// the pairing should be enforced by deferred calls.
//
// NOTE: Buffers objects do not allocate any space until requested by Alloc,
// the mechanism works on demand only.
//
// FAQ: Why the 'bufs' package name?
//
// Package name 'bufs' was intentionally chosen instead of the perhaps more
// conventional 'buf'. There are already too many 'buf' named things in the
// code out there and that'll be a source of a lot of trouble. It's a bit
// similar situation as in the case of package "strings" (not "string").
package bufs
import (
"errors"
"sort"
"sync"
)
// Buffers type represents a buffer ([]byte) cache.
//
// NOTE: Do not modify Buffers directly, use only its methods. Do not create
// additional values (copies) of Buffers, that'll break its functionality. Use
// a pointer instead to refer to a single instance from different
// places/scopes.
type Buffers [][]byte
// New returns a newly created instance of Buffers with a maximum capacity of n
// buffers.
//
// NOTE: 'bufs.New(n)' is the same as 'make(bufs.Buffers, n)'.
func New(n int) Buffers {
return make(Buffers, n)
}
// Alloc will return a buffer such that len(r) == n. It will firstly try to
// find an existing and unused buffer of big enough size. Only when there is no
// such, then one of the buffer slots is reallocated to a bigger size.
//
// It's okay to use append with buffers returned by Alloc. But it can cause
// allocation in that case and will again be producing load for the garbage
// collector. The best use of Alloc is for I/O buffers where the needed size of
// the buffer is figured out at some point of the code path in a 'final size'
// sense. Another real world example are compression/decompression buffers.
//
// NOTE: The buffer returned by Alloc _is not_ zeroed. That's okay for e.g.
// passing a buffer to io.Reader. If you need a zeroed buffer use Calloc.
//
// NOTE: Buffers returned from Alloc _must not_ be exposed/returned to your
// clients. Those buffers are intended to be used strictly internally, within
// the methods of some "object".
//
// NOTE: Alloc will panic if there are no buffers (buffer slots) left.
func (p *Buffers) Alloc(n int) (r []byte) {
b := *p
if len(b) == 0 {
panic(errors.New("Buffers.Alloc: out of buffers"))
}
biggest, best, biggestI, bestI := -1, -1, -1, -1
for i, v := range b {
//ln := len(v)
// The above was correct, buts it's just confusing. It worked
// because not the buffers, but slices of them are returned in
// the 'if best >= n' code path.
ln := cap(v)
if ln >= biggest {
biggest, biggestI = ln, i
}
if ln >= n && (bestI < 0 || best > ln) {
best, bestI = ln, i
if ln == n {
break
}
}
}
last := len(b) - 1
if best >= n {
r = b[bestI]
b[last], b[bestI] = b[bestI], b[last]
*p = b[:last]
return r[:n]
}
r = make([]byte, n, overCommit(n))
b[biggestI] = r
b[last], b[biggestI] = b[biggestI], b[last]
*p = b[:last]
return
}
// Calloc will acquire a buffer using Alloc and then clears it to zeros. The
// zeroing goes up to n, not cap(r).
func (p *Buffers) Calloc(n int) (r []byte) {
r = p.Alloc(n)
for i := range r {
r[i] = 0
}
return
}
// Free makes the lastly allocated by Alloc buffer free (available) again for
// Alloc.
//
// NOTE: Improper Free invocations, like in the sequence {New, Alloc, Free,
// Free}, will panic.
func (p *Buffers) Free() {
b := *p
b = b[:len(b)+1]
*p = b
}
// Stats reports memory consumed by Buffers, without accounting for some
// (smallish) additional overhead.
func (p *Buffers) Stats() (bytes int) {
b := *p
b = b[:cap(b)]
for _, v := range b {
bytes += cap(v)
}
return
}
// Cache caches buffers ([]byte). A zero value of Cache is ready for use.
//
// NOTE: Do not modify a Cache directly, use only its methods. Do not create
// additional values (copies) of a Cache, that'll break its functionality. Use
// a pointer instead to refer to a single instance from different
// places/scopes.
type Cache [][]byte
// Get returns a buffer ([]byte) of length n. If no such buffer is cached then
// a biggest cached buffer is resized to have length n and returned. If there
// are no cached items at all, Get returns a newly allocated buffer.
//
// In other words the cache policy is:
//
// - If the cache is empty, the buffer must be newly created and returned.
// Cache remains empty.
//
// - If a buffer of sufficient size is found in the cache, remove it from the
// cache and return it.
//
// - Otherwise the cache is non empty, but no cached buffer is big enough.
// Enlarge the biggest cached buffer, remove it from the cache and return it.
// This provide cached buffers size adjustment based on demand.
//
// In short, if the cache is not empty, Get guarantees to make it always one
// item less. This rules prevent uncontrolled cache grow in some scenarios.
// The older policy was not preventing that. Another advantage is better cached
// buffers sizes "auto tuning", although not in every possible use case.
//
// NOTE: The buffer returned by Get _is not guaranteed_ to be zeroed. That's
// okay for e.g. passing a buffer to io.Reader. If you need a zeroed buffer
// use Cget.
func (c *Cache) Get(n int) []byte {
r, _ := c.get(n)
return r
}
func (c *Cache) get(n int) (r []byte, isZeroed bool) {
s := *c
lens := len(s)
if lens == 0 {
r, isZeroed = make([]byte, n, overCommit(n)), true
return
}
i := sort.Search(lens, func(x int) bool { return len(s[x]) >= n })
if i == lens {
i--
s[i] = make([]byte, n, overCommit(n))
}
r = s[i][:n]
copy(s[i:], s[i+1:])
s[lens-1] = nil
s = s[:lens-1]
*c = s
return r, false
}
// Cget will acquire a buffer using Get and then clears it to zeros. The
// zeroing goes up to n, not cap(r).
func (c *Cache) Cget(n int) (r []byte) {
r, ok := c.get(n)
if ok {
return
}
for i := range r {
r[i] = 0
}
return
}
// Put caches b for possible later reuse (via Get). No other references to b's
// backing array may exist. Otherwise a big mess is sooner or later inevitable.
func (c *Cache) Put(b []byte) {
b = b[:cap(b)]
lenb := len(b)
if lenb == 0 {
return
}
s := *c
lens := len(s)
i := sort.Search(lens, func(x int) bool { return len(s[x]) >= lenb })
s = append(s, nil)
copy(s[i+1:], s[i:])
s[i] = b
*c = s
return
}
// Stats reports memory consumed by a Cache, without accounting for some
// (smallish) additional overhead. 'n' is the number of cached buffers, bytes
// is their combined capacity.
func (c Cache) Stats() (n, bytes int) {
n = len(c)
for _, v := range c {
bytes += cap(v)
}
return
}
// CCache is a Cache which is safe for concurrent use by multiple goroutines.
type CCache struct {
c Cache
mu sync.Mutex
}
// Get returns a buffer ([]byte) of length n. If no such buffer is cached then
// a biggest cached buffer is resized to have length n and returned. If there
// are no cached items at all, Get returns a newly allocated buffer.
//
// In other words the cache policy is:
//
// - If the cache is empty, the buffer must be newly created and returned.
// Cache remains empty.
//
// - If a buffer of sufficient size is found in the cache, remove it from the
// cache and return it.
//
// - Otherwise the cache is non empty, but no cached buffer is big enough.
// Enlarge the biggest cached buffer, remove it from the cache and return it.
// This provide cached buffers size adjustment based on demand.
//
// In short, if the cache is not empty, Get guarantees to make it always one
// item less. This rules prevent uncontrolled cache grow in some scenarios.
// The older policy was not preventing that. Another advantage is better cached
// buffers sizes "auto tuning", although not in every possible use case.
//
// NOTE: The buffer returned by Get _is not guaranteed_ to be zeroed. That's
// okay for e.g. passing a buffer to io.Reader. If you need a zeroed buffer
// use Cget.
func (c *CCache) Get(n int) []byte {
c.mu.Lock()
r, _ := c.c.get(n)
c.mu.Unlock()
return r
}
// Cget will acquire a buffer using Get and then clears it to zeros. The
// zeroing goes up to n, not cap(r).
func (c *CCache) Cget(n int) (r []byte) {
c.mu.Lock()
r = c.c.Cget(n)
c.mu.Unlock()
return
}
// Put caches b for possible later reuse (via Get). No other references to b's
// backing array may exist. Otherwise a big mess is sooner or later inevitable.
func (c *CCache) Put(b []byte) {
c.mu.Lock()
c.c.Put(b)
c.mu.Unlock()
}
// Stats reports memory consumed by a Cache, without accounting for some
// (smallish) additional overhead. 'n' is the number of cached buffers, bytes
// is their combined capacity.
func (c *CCache) Stats() (n, bytes int) {
c.mu.Lock()
n, bytes = c.c.Stats()
c.mu.Unlock()
return
}
// GCache is a ready to use global instance of a CCache.
var GCache CCache
func overCommit(n int) int {
switch {
case n < 8:
return 8
case n < 1e5:
return 2 * n
case n < 1e6:
return 3 * n / 2
default:
return n
}
}
|