1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
|
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The storage space management.
package lldb
import (
"bytes"
"errors"
"fmt"
"io"
"sort"
"strings"
"sync"
"github.com/cznic/bufs"
"github.com/cznic/mathutil"
"github.com/cznic/zappy"
)
const (
maxBuf = maxRq + 20 // bufs,Buffers.Alloc
)
// Options are passed to the NewAllocator to amend some configuration. The
// compatibility promise is the same as of struct types in the Go standard
// library - introducing changes can be made only by adding new exported
// fields, which is backward compatible as long as client code uses field names
// to assign values of imported struct types literals.
//
// NOTE: No options are currently defined.
type Options struct{}
// AllocStats record statistics about a Filer. It can be optionally filled by
// Allocator.Verify, if successful.
type AllocStats struct {
Handles int64 // total valid handles in use
Compression int64 // number of compressed blocks
TotalAtoms int64 // total number of atoms == AllocAtoms + FreeAtoms
AllocBytes int64 // bytes allocated (after decompression, if/where used)
AllocAtoms int64 // atoms allocated/used, including relocation atoms
Relocations int64 // number of relocated used blocks
FreeAtoms int64 // atoms unused
AllocMap map[int64]int64 // allocated block size in atoms -> count of such blocks
FreeMap map[int64]int64 // free block size in atoms -> count of such blocks
}
/*
Allocator implements "raw" storage space management (allocation and
deallocation) for a low level of a DB engine. The storage is an abstraction
provided by a Filer.
The terms MUST or MUST NOT, if/where used in the documentation of Allocator,
written in all caps as seen here, are a requirement for any possible
alternative implementations aiming for compatibility with this one.
Filer file
A Filer file, or simply 'file', is a linear, contiguous sequence of blocks.
Blocks may be either free (currently unused) or allocated (currently used).
Some blocks may eventually become virtual in a sense as they may not be
realized in the storage (sparse files).
Free Lists Table
File starts with a FLT. This table records heads of 14 doubly linked free
lists. The zero based index (I) vs minimal size of free blocks in that list,
except the last one which registers free blocks of size 4112+ atoms:
MinSize == 2^I
For example 0 -> 1, 1 -> 2, ... 12 -> 4096.
Each entry in the FLT is 8 bytes in netwtork order, MSB MUST be zero, ie. the
slot value is effectively only 7 bytes. The value is the handle of the head of
the respective doubly linked free list. The FLT size is 14*8 == 112(0x70)
bytes. If the free blocks list for any particular size is empty, the respective
FLT slot is zero. Sizes of free blocks in one list MUST NOT overlap with sizes
of free lists in other list. For example, even though a free block of size 2
technically is of minimal size >= 1, it MUST NOT be put to the list for slot 0
(minimal size 1), but in slot 1( minimal size 2).
slot 0: sizes [1, 2)
slot 1: sizes [2, 4)
slot 2: sizes [4, 8)
...
slot 11: sizes [2048, 4096)
slot 12: sizes [4096, 4112)
slot 13: sizes [4112, inf)
The last FLT slot collects all free blocks bigger than its minimal size. That
still respects the 'no overlap' invariant.
File blocks
A block is a linear, contiguous sequence of atoms. The first and last atoms of
a block provide information about, for example, whether the block is free or
used, what is the size of the block, etc. Details are discussed elsewhere. The
first block of a file starts immediately after FLT, ie. at file offset
112(0x70).
Block atoms
An atom is a fixed size piece of a block (and thus of a file too); it is 16
bytes long. A consequence is that for a valid file:
filesize == 0 (mod 16)
The first atom of the first block is considered to be atom #1.
Block handles
A handle is an integer referring to a block. The reference is the number of the
atom the block starts with. Put in other way:
handle == offset/16 - 6
offset == 16 * (handle + 6)
`offset` is the offset of the first byte of the block, measured in bytes
- as in fseek(3). Handle has type `int64`, but only the lower 7 bytes may be
nonzero while referring to a block, both in code as well as when persisted in
the the file's internal bookkeeping structures - see 'Block types' bellow. So a
handle is effectively only `uint56`. This also means that the maximum usable
size of a file is 2^56 atoms. That is 2^60 bytes == 1 exabyte (10^18 bytes).
Nil handles
A handle with numeric value of '0' refers to no block.
Zero padding
A padding is used to round-up a block size to be a whole number of atoms. Any
padding, if present, MUST be all zero bytes. Note that the size of padding is
in [0, 15].
Content wiping
When a block is deallocated, its data content is not wiped as the added
overhead may be substantial while not necessarily needed. Client code should
however overwrite the content of any block having sensitive data with eg. zeros
(good compression) - before deallocating the block.
Block tags
Every block is tagged in its first byte (a head tag) and last byte (tail tag).
Block types are:
1. Short content used block (head tags 0x00-0xFB)
2. Long content used block (head tag 0xFC)
3. Relocated used block (head tag 0xFD)
4. Short, single atom, free block (head tag 0xFE)
5. Long free block (head tag 0xFF)
Note: Relocated used block, 3. above (head tag 0xFD) MUST NOT refer to blocks
other then 1. or 2. above (head tags 0x00-0xFC).
Content blocks
Used blocks (head tags 0x00-0xFC) tail tag distinguish used/unused block and if
content is compressed or not.
Content compression
The tail flag of an used block is one of
CC == 0 // Content is not compressed.
CC == 1 // Content is in zappy compression format.
If compression of written content is enabled, there are two cases: If
compressed size < original size then the compressed content should be written
if it will save at least one atom of the block. If compressed size >= original
size then the compressed content should not be used.
It's recommended to use compression. For example the BTrees implementation
assumes compression is used. Using compression may cause a slowdown in some
cases while it may as well cause a speedup.
Short content block
Short content block carries content of length between N == 0(0x00) and N ==
251(0xFB) bytes.
|<-first atom start ... last atom end->|
+---++-- ... --+-- ... --++------+
| 0 || 1... | 0x*...0x*E || 0x*F |
+---++-- ... --+-- ... --++------+
| N || content | padding || CC |
+---++-- ... --+-- ... --++------+
A == (N+1)/16 + 1 // The number of atoms in the block [1, 16]
padding == 15 - (N+1)%16 // Length of the zero padding
Long content block
Long content block carries content of length between N == 252(0xFC) and N ==
65787(0x100FB) bytes.
|<-first atom start ... last atom end->|
+------++------+-- ... --+-- ... --++------+
| 0 || 1..2 | 3... | 0x*...0x*E || 0x*F |
+------++------+-- ... --+-- ... --++------+
| 0xFC || M | content | padding || CC |
+------++------+-- ... --+-- ... --++------+
A == (N+3)/16 + 1 // The number of atoms in the block [16, 4112]
M == N % 0x10000 // Stored as 2 bytes in network byte order
padding == 15 - (N+3)%16 // Length of the zero padding
Relocated used block
Relocated block allows to permanently assign a handle to some content and
resize the content anytime afterwards without having to update all the possible
existing references; the handle can be constant while the content size may be
dynamic. When relocating a block, any space left by the original block content,
above this single atom block, MUST be reclaimed.
Relocations MUST point only to a used short or long block == blocks with tags
0x00...0xFC.
+------++------+---------++----+
| 0 || 1..7 | 8...14 || 15 |
+------++------+---------++----+
| 0xFD || H | padding || 0 |
+------++------+---------++----+
H is the handle of the relocated block in network byte order.
Free blocks
Free blocks are the result of space deallocation. Free blocks are organized in
one or more doubly linked lists, abstracted by the FLT interface. Free blocks
MUST be "registered" by putting them in such list. Allocator MUST reuse a big
enough free block, if such exists, before growing the file size. When a free
block is created by deallocation or reallocation it MUST be joined with any
adjacently existing free blocks before "registering". If the resulting free
block is now a last block of a file, the free block MUST be discarded and the
file size MUST be truncated accordingly instead. Put differently, there MUST
NOT ever be a free block at the file end.
A single free atom
Is an unused block of size 1 atom.
+------++------+--------++------+
| 0 || 1..7 | 8...14 || 15 |
+------++------+--------++------+
| 0xFE || P | N || 0xFE |
+------++------+--------++------+
P and N, stored in network byte order, are the previous and next free block
handles in the doubly linked list to which this free block belongs.
A long unused block
Is an unused block of size > 1 atom.
+------++------+-------+---------+- ... -+----------++------+
| 0 || 1..7 | 8..14 | 15...21 | | Z-7..Z-1 || Z |
+------++------+-------+---------+- ... -+----------++------+
| 0xFF || S | P | N | Leak | S || 0xFF |
+------++------+-------+---------+- ... -+----------++------+
Z == 16 * S - 1
S is the size of this unused block in atoms. P and N are the previous and next
free block handles in the doubly linked list to which this free block belongs.
Leak contains any data the block had before deallocating this block. See also
the subtitle 'Content wiping' above. S, P and N are stored in network byte
order. Large free blocks may trigger a consideration of file hole punching of
the Leak field - for some value of 'large'.
Note: Allocator methods vs CRUD[1]:
Alloc [C]reate
Get [R]ead
Realloc [U]pdate
Free [D]elete
Note: No Allocator method returns io.EOF.
[1]: http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
*/
type Allocator struct {
f Filer
flt flt
Compress bool // enables content compression
cache cache
m map[int64]*node
lru lst
expHit int64
expMiss int64
cacheSz int
hit uint16
miss uint16
mu sync.Mutex
}
// NewAllocator returns a new Allocator. To open an existing file, pass its
// Filer. To create a "new" file, pass a Filer which file is of zero size.
func NewAllocator(f Filer, opts *Options) (a *Allocator, err error) {
if opts == nil { // Enforce *Options is always passed
return nil, errors.New("NewAllocator: nil opts passed")
}
a = &Allocator{
f: f,
cacheSz: 10,
}
a.cinit()
switch x := f.(type) {
case *RollbackFiler:
x.afterRollback = func() error {
a.cinit()
return a.flt.load(a.f, 0)
}
case *ACIDFiler0:
x.RollbackFiler.afterRollback = func() error {
a.cinit()
return a.flt.load(a.f, 0)
}
}
sz, err := f.Size()
if err != nil {
return
}
a.flt.init()
if sz == 0 {
var b [fltSz]byte
if err = a.f.BeginUpdate(); err != nil {
return
}
if _, err = f.WriteAt(b[:], 0); err != nil {
a.f.Rollback()
return
}
return a, a.f.EndUpdate()
}
return a, a.flt.load(f, 0)
}
// CacheStats reports cache statistics.
//
//TODO return a struct perhaps.
func (a *Allocator) CacheStats() (buffersUsed, buffersTotal int, bytesUsed, bytesTotal, hits, misses int64) {
buffersUsed = len(a.m)
buffersTotal = buffersUsed + len(a.cache)
bytesUsed = a.lru.size()
bytesTotal = bytesUsed + a.cache.size()
hits = a.expHit
misses = a.expMiss
return
}
func (a *Allocator) cinit() {
for h, n := range a.m {
a.cache.put(a.lru.remove(n))
delete(a.m, h)
}
if a.m == nil {
a.m = map[int64]*node{}
}
}
func (a *Allocator) cadd(b []byte, h int64) {
if len(a.m) < a.cacheSz {
n := a.cache.get(len(b))
n.h = h
copy(n.b, b)
a.m[h] = a.lru.pushFront(n)
return
}
// cache full
delete(a.m, a.cache.put(a.lru.removeBack()).h)
n := a.cache.get(len(b))
n.h = h
copy(n.b, b)
a.m[h] = a.lru.pushFront(n)
return
}
func (a *Allocator) cfree(h int64) {
n, ok := a.m[h]
if !ok { // must have been evicted
return
}
a.cache.put(a.lru.remove(n))
delete(a.m, h)
}
// Alloc allocates storage space for b and returns the handle of the new block
// with content set to b or an error, if any. The returned handle is valid only
// while the block is used - until the block is deallocated. No two valid
// handles share the same value within the same Filer, but any value of a
// handle not referring to any used block may become valid any time as a result
// of Alloc.
//
// Invoking Alloc on an empty Allocator is guaranteed to return handle with
// value 1. The intended use of content of handle 1 is a root "directory" of
// other data held by an Allocator.
//
// Passing handles not obtained initially from Alloc or not anymore valid to
// any other Allocator methods can result in an irreparably corrupted database.
func (a *Allocator) Alloc(b []byte) (handle int64, err error) {
buf := bufs.GCache.Get(zappy.MaxEncodedLen(len(b)))
defer bufs.GCache.Put(buf)
buf, _, cc, err := a.makeUsedBlock(buf, b)
if err != nil {
return
}
if handle, err = a.alloc(buf, cc); err == nil {
a.cadd(b, handle)
}
return
}
func (a *Allocator) alloc(b []byte, cc byte) (h int64, err error) {
rqAtoms := n2atoms(len(b))
if h = a.flt.find(rqAtoms); h == 0 { // must grow
var sz int64
if sz, err = a.f.Size(); err != nil {
return
}
h = off2h(sz)
err = a.writeUsedBlock(h, cc, b)
return
}
// Handle is the first item of a free blocks list.
tag, s, prev, next, err := a.nfo(h)
if err != nil {
return
}
if tag != tagFreeShort && tag != tagFreeLong {
err = &ErrILSEQ{Type: ErrExpFreeTag, Off: h2off(h), Arg: int64(tag)}
return
}
if prev != 0 {
err = &ErrILSEQ{Type: ErrHead, Off: h2off(h), Arg: prev}
return
}
if s < int64(rqAtoms) {
err = &ErrILSEQ{Type: ErrSmall, Arg: int64(rqAtoms), Arg2: s, Off: h2off(h)}
return
}
if err = a.unlink(h, s, prev, next); err != nil {
return
}
if s > int64(rqAtoms) {
freeH := h + int64(rqAtoms)
freeAtoms := s - int64(rqAtoms)
if err = a.link(freeH, freeAtoms); err != nil {
return
}
}
return h, a.writeUsedBlock(h, cc, b)
}
// Free deallocates the block referred to by handle or returns an error, if
// any.
//
// After Free succeeds, handle is invalid and must not be used.
//
// Handle must have been obtained initially from Alloc and must be still valid,
// otherwise a database may get irreparably corrupted.
func (a *Allocator) Free(handle int64) (err error) {
if handle <= 0 || handle > maxHandle {
return &ErrINVAL{"Allocator.Free: handle out of limits", handle}
}
a.cfree(handle)
return a.free(handle, 0, true)
}
func (a *Allocator) free(h, from int64, acceptRelocs bool) (err error) {
tag, atoms, _, n, err := a.nfo(h)
if err != nil {
return
}
switch tag {
default:
// nop
case tagUsedLong:
// nop
case tagUsedRelocated:
if !acceptRelocs {
return &ErrILSEQ{Type: ErrUnexpReloc, Off: h2off(h), Arg: h2off(from)}
}
if err = a.free(n, h, false); err != nil {
return
}
case tagFreeShort, tagFreeLong:
return &ErrINVAL{"Allocator.Free: attempt to free a free block at off", h2off(h)}
}
return a.free2(h, atoms)
}
func (a *Allocator) free2(h, atoms int64) (err error) {
sz, err := a.f.Size()
if err != nil {
return
}
ltag, latoms, lp, ln, err := a.leftNfo(h)
if err != nil {
return
}
if ltag != tagFreeShort && ltag != tagFreeLong {
latoms = 0
}
var rtag byte
var ratoms, rp, rn int64
isTail := h2off(h)+atoms*16 == sz
if !isTail {
if rtag, ratoms, rp, rn, err = a.nfo(h + atoms); err != nil {
return
}
}
if rtag != tagFreeShort && rtag != tagFreeLong {
ratoms = 0
}
switch {
case latoms == 0 && ratoms == 0:
// -> isolated <-
if isTail { // cut tail
return a.f.Truncate(h2off(h))
}
return a.link(h, atoms)
case latoms == 0 && ratoms != 0:
// right join ->
if err = a.unlink(h+atoms, ratoms, rp, rn); err != nil {
return
}
return a.link(h, atoms+ratoms)
case latoms != 0 && ratoms == 0:
// <- left join
if err = a.unlink(h-latoms, latoms, lp, ln); err != nil {
return
}
if isTail {
return a.f.Truncate(h2off(h - latoms))
}
return a.link(h-latoms, latoms+atoms)
}
// case latoms != 0 && ratoms != 0:
// <- middle join ->
lh, rh := h-latoms, h+atoms
if err = a.unlink(lh, latoms, lp, ln); err != nil {
return
}
// Prev unlink may have invalidated rp or rn
if _, _, rp, rn, err = a.nfo(rh); err != nil {
return
}
if err = a.unlink(rh, ratoms, rp, rn); err != nil {
return
}
return a.link(h-latoms, latoms+atoms+ratoms)
}
// Add a free block h to the appropriate free list
func (a *Allocator) link(h, atoms int64) (err error) {
if err = a.makeFree(h, atoms, 0, a.flt.head(atoms)); err != nil {
return
}
return a.flt.setHead(h, atoms, a.f)
}
// Remove free block h from the free list
func (a *Allocator) unlink(h, atoms, p, n int64) (err error) {
switch {
case p == 0 && n == 0:
// single item list, must be head
return a.flt.setHead(0, atoms, a.f)
case p == 0 && n != 0:
// head of list (has next item[s])
if err = a.prev(n, 0); err != nil {
return
}
// new head
return a.flt.setHead(n, atoms, a.f)
case p != 0 && n == 0:
// last item in list
return a.next(p, 0)
}
// case p != 0 && n != 0:
// intermediate item in a list
if err = a.next(p, n); err != nil {
return
}
return a.prev(n, p)
}
//TODO remove ?
// Return len(slice) == n, reuse src if possible.
func need(n int, src []byte) []byte {
if cap(src) < n {
bufs.GCache.Put(src)
return bufs.GCache.Get(n)
}
return src[:n]
}
// Get returns the data content of a block referred to by handle or an error if
// any. The returned slice may be a sub-slice of buf if buf was large enough
// to hold the entire content. Otherwise, a newly allocated slice will be
// returned. It is valid to pass a nil buf.
//
// If the content was stored using compression then it is transparently
// returned decompressed.
//
// Handle must have been obtained initially from Alloc and must be still valid,
// otherwise invalid data may be returned without detecting the error.
//
// Get is safe for concurrent access by multiple goroutines iff no other
// goroutine mutates the DB.
func (a *Allocator) Get(buf []byte, handle int64) (b []byte, err error) {
buf = buf[:cap(buf)]
a.mu.Lock() // X1+
if n, ok := a.m[handle]; ok {
a.lru.moveToFront(n)
b = need(len(n.b), buf)
copy(b, n.b)
a.expHit++
a.hit++
a.mu.Unlock() // X1-
return
}
a.expMiss++
a.miss++
if a.miss > 10 && len(a.m) < 500 {
if 100*a.hit/a.miss < 95 {
a.cacheSz++
}
a.hit, a.miss = 0, 0
}
a.mu.Unlock() // X1-
defer func(h int64) {
if err == nil {
a.mu.Lock() // X2+
a.cadd(b, h)
a.mu.Unlock() // X2-
}
}(handle)
first := bufs.GCache.Get(16)
defer bufs.GCache.Put(first)
relocated := false
relocSrc := handle
reloc:
if handle <= 0 || handle > maxHandle {
return nil, &ErrINVAL{"Allocator.Get: handle out of limits", handle}
}
off := h2off(handle)
if err = a.read(first, off); err != nil {
return
}
switch tag := first[0]; tag {
default:
dlen := int(tag)
atoms := n2atoms(dlen)
switch atoms {
case 1:
switch tag := first[15]; tag {
default:
return nil, &ErrILSEQ{Type: ErrTailTag, Off: off, Arg: int64(tag)}
case tagNotCompressed:
b = need(dlen, buf)
copy(b, first[1:])
return
case tagCompressed:
return zappy.Decode(buf, first[1:dlen+1])
}
default:
cc := bufs.GCache.Get(1)
defer bufs.GCache.Put(cc)
dlen := int(tag)
atoms := n2atoms(dlen)
tailOff := off + 16*int64(atoms) - 1
if err = a.read(cc, tailOff); err != nil {
return
}
switch tag := cc[0]; tag {
default:
return nil, &ErrILSEQ{Type: ErrTailTag, Off: off, Arg: int64(tag)}
case tagNotCompressed:
b = need(dlen, buf)
off += 1
if err = a.read(b, off); err != nil {
b = buf[:0]
}
return
case tagCompressed:
zbuf := bufs.GCache.Get(dlen)
defer bufs.GCache.Put(zbuf)
off += 1
if err = a.read(zbuf, off); err != nil {
return buf[:0], err
}
return zappy.Decode(buf, zbuf)
}
}
case 0:
return buf[:0], nil
case tagUsedLong:
cc := bufs.GCache.Get(1)
defer bufs.GCache.Put(cc)
dlen := m2n(int(first[1])<<8 | int(first[2]))
atoms := n2atoms(dlen)
tailOff := off + 16*int64(atoms) - 1
if err = a.read(cc, tailOff); err != nil {
return
}
switch tag := cc[0]; tag {
default:
return nil, &ErrILSEQ{Type: ErrTailTag, Off: off, Arg: int64(tag)}
case tagNotCompressed:
b = need(dlen, buf)
off += 3
if err = a.read(b, off); err != nil {
b = buf[:0]
}
return
case tagCompressed:
zbuf := bufs.GCache.Get(dlen)
defer bufs.GCache.Put(zbuf)
off += 3
if err = a.read(zbuf, off); err != nil {
return buf[:0], err
}
return zappy.Decode(buf, zbuf)
}
case tagFreeShort, tagFreeLong:
return nil, &ErrILSEQ{Type: ErrExpUsedTag, Off: off, Arg: int64(tag)}
case tagUsedRelocated:
if relocated {
return nil, &ErrILSEQ{Type: ErrUnexpReloc, Off: off, Arg: relocSrc}
}
handle = b2h(first[1:])
relocated = true
goto reloc
}
}
var reallocTestHook bool
// Realloc sets the content of a block referred to by handle or returns an
// error, if any.
//
// Handle must have been obtained initially from Alloc and must be still valid,
// otherwise a database may get irreparably corrupted.
func (a *Allocator) Realloc(handle int64, b []byte) (err error) {
if handle <= 0 || handle > maxHandle {
return &ErrINVAL{"Realloc: handle out of limits", handle}
}
a.cfree(handle)
if err = a.realloc(handle, b); err != nil {
return
}
if reallocTestHook {
if err = cacheAudit(a.m, &a.lru); err != nil {
return
}
}
a.cadd(b, handle)
return
}
func (a *Allocator) realloc(handle int64, b []byte) (err error) {
var dlen, needAtoms0 int
b8 := bufs.GCache.Get(8)
defer bufs.GCache.Put(b8)
dst := bufs.GCache.Get(zappy.MaxEncodedLen(len(b)))
defer bufs.GCache.Put(dst)
b, needAtoms0, cc, err := a.makeUsedBlock(dst, b)
if err != nil {
return
}
needAtoms := int64(needAtoms0)
off := h2off(handle)
if err = a.read(b8[:], off); err != nil {
return
}
switch tag := b8[0]; tag {
default:
dlen = int(b8[0])
case tagUsedLong:
dlen = m2n(int(b8[1])<<8 | int(b8[2]))
case tagUsedRelocated:
if err = a.free(b2h(b8[1:]), handle, false); err != nil {
return err
}
dlen = 0
case tagFreeShort, tagFreeLong:
return &ErrINVAL{"Allocator.Realloc: invalid handle", handle}
}
atoms := int64(n2atoms(dlen))
retry:
switch {
case needAtoms < atoms:
// in place shrink
if err = a.writeUsedBlock(handle, cc, b); err != nil {
return
}
fh, fa := handle+needAtoms, atoms-needAtoms
sz, err := a.f.Size()
if err != nil {
return err
}
if h2off(fh)+16*fa == sz {
return a.f.Truncate(h2off(fh))
}
return a.free2(fh, fa)
case needAtoms == atoms:
// in place replace
return a.writeUsedBlock(handle, cc, b)
}
// case needAtoms > atoms:
// in place extend or relocate
var sz int64
if sz, err = a.f.Size(); err != nil {
return
}
off = h2off(handle)
switch {
case off+atoms*16 == sz:
// relocating tail block - shortcut
return a.writeUsedBlock(handle, cc, b)
default:
if off+atoms*16 < sz {
// handle is not a tail block, check right neighbour
rh := handle + atoms
rtag, ratoms, p, n, e := a.nfo(rh)
if e != nil {
return e
}
if rtag == tagFreeShort || rtag == tagFreeLong {
// Right neighbour is a free block
if needAtoms <= atoms+ratoms {
// can expand in place
if err = a.unlink(rh, ratoms, p, n); err != nil {
return
}
atoms += ratoms
goto retry
}
}
}
}
if atoms > 1 {
if err = a.realloc(handle, nil); err != nil {
return
}
}
var newH int64
if newH, err = a.alloc(b, cc); err != nil {
return err
}
rb := bufs.GCache.Cget(16)
defer bufs.GCache.Put(rb)
rb[0] = tagUsedRelocated
h2b(rb[1:], newH)
if err = a.writeAt(rb[:], h2off(handle)); err != nil {
return
}
return a.writeUsedBlock(newH, cc, b)
}
func (a *Allocator) writeAt(b []byte, off int64) (err error) {
var n int
if n, err = a.f.WriteAt(b, off); err != nil {
return
}
if n != len(b) {
err = io.ErrShortWrite
}
return
}
func (a *Allocator) write(off int64, b ...[]byte) (err error) {
rq := 0
for _, part := range b {
rq += len(part)
}
buf := bufs.GCache.Get(rq)
defer bufs.GCache.Put(buf)
buf = buf[:0]
for _, part := range b {
buf = append(buf, part...)
}
return a.writeAt(buf, off)
}
func (a *Allocator) read(b []byte, off int64) (err error) {
var rn int
if rn, err = a.f.ReadAt(b, off); rn != len(b) {
return &ErrILSEQ{Type: ErrOther, Off: off, More: err}
}
return nil
}
// nfo returns h's tag. If it's a free block then return also (s)ize (in
// atoms), (p)rev and (n)ext. If it's a used block then only (s)ize is returned
// (again in atoms). If it's a used relocate block then (n)ext is set to the
// relocation target handle.
func (a *Allocator) nfo(h int64) (tag byte, s, p, n int64, err error) {
off := h2off(h)
rq := int64(22)
sz, err := a.f.Size()
if err != nil {
return
}
if off+rq >= sz {
if rq = sz - off; rq < 15 {
err = io.ErrUnexpectedEOF
return
}
}
buf := bufs.GCache.Get(22)
defer bufs.GCache.Put(buf)
if err = a.read(buf[:rq], off); err != nil {
return
}
switch tag = buf[0]; tag {
default:
s = int64(n2atoms(int(tag)))
case tagUsedLong:
s = int64(n2atoms(m2n(int(buf[1])<<8 | int(buf[2]))))
case tagFreeLong:
if rq < 22 {
err = io.ErrUnexpectedEOF
return
}
s, p, n = b2h(buf[1:]), b2h(buf[8:]), b2h(buf[15:])
case tagUsedRelocated:
s, n = 1, b2h(buf[1:])
case tagFreeShort:
s, p, n = 1, b2h(buf[1:]), b2h(buf[8:])
}
return
}
// leftNfo returns nfo for h's left neighbor if h > 1 and the left neighbor is
// a free block. Otherwise all zero values are returned instead.
func (a *Allocator) leftNfo(h int64) (tag byte, s, p, n int64, err error) {
if !(h > 1) {
return
}
buf := bufs.GCache.Get(8)
defer bufs.GCache.Put(buf)
off := h2off(h)
if err = a.read(buf[:], off-8); err != nil {
return
}
switch tag := buf[7]; tag {
case tagFreeShort:
return a.nfo(h - 1)
case tagFreeLong:
return a.nfo(h - b2h(buf[:]))
}
return
}
// Set h.prev = p
func (a *Allocator) prev(h, p int64) (err error) {
b := bufs.GCache.Get(7)
defer bufs.GCache.Put(b)
off := h2off(h)
if err = a.read(b[:1], off); err != nil {
return
}
switch tag := b[0]; tag {
default:
return &ErrILSEQ{Type: ErrExpFreeTag, Off: off, Arg: int64(tag)}
case tagFreeShort:
off += 1
case tagFreeLong:
off += 8
}
return a.writeAt(h2b(b[:7], p), off)
}
// Set h.next = n
func (a *Allocator) next(h, n int64) (err error) {
b := bufs.GCache.Get(7)
defer bufs.GCache.Put(b)
off := h2off(h)
if err = a.read(b[:1], off); err != nil {
return
}
switch tag := b[0]; tag {
default:
return &ErrILSEQ{Type: ErrExpFreeTag, Off: off, Arg: int64(tag)}
case tagFreeShort:
off += 8
case tagFreeLong:
off += 15
}
return a.writeAt(h2b(b[:7], n), off)
}
// Make the filer image @h a free block.
func (a *Allocator) makeFree(h, atoms, prev, next int64) (err error) {
buf := bufs.GCache.Get(22)
defer bufs.GCache.Put(buf)
switch {
case atoms == 1:
buf[0], buf[15] = tagFreeShort, tagFreeShort
h2b(buf[1:], prev)
h2b(buf[8:], next)
if err = a.write(h2off(h), buf[:16]); err != nil {
return
}
default:
buf[0] = tagFreeLong
h2b(buf[1:], atoms)
h2b(buf[8:], prev)
h2b(buf[15:], next)
if err = a.write(h2off(h), buf[:22]); err != nil {
return
}
h2b(buf[:], atoms)
buf[7] = tagFreeLong
if err = a.write(h2off(h+atoms)-8, buf[:8]); err != nil {
return
}
}
if prev != 0 {
if err = a.next(prev, h); err != nil {
return
}
}
if next != 0 {
err = a.prev(next, h)
}
return
}
func (a *Allocator) makeUsedBlock(dst []byte, b []byte) (w []byte, rqAtoms int, cc byte, err error) {
cc = tagNotCompressed
w = b
var n int
if n = len(b); n > maxRq {
return nil, 0, 0, &ErrINVAL{"Allocator.makeUsedBlock: content size out of limits", n}
}
rqAtoms = n2atoms(n)
if a.Compress && n > 14 { // attempt compression
if dst, err = zappy.Encode(dst, b); err != nil {
return
}
n2 := len(dst)
if rqAtoms2 := n2atoms(n2); rqAtoms2 < rqAtoms { // compression saved at least a single atom
w, n, rqAtoms, cc = dst, n2, rqAtoms2, tagCompressed
}
}
return
}
func (a *Allocator) writeUsedBlock(h int64, cc byte, b []byte) (err error) {
n := len(b)
rq := n2atoms(n) << 4
buf := bufs.GCache.Get(rq)
defer bufs.GCache.Put(buf)
switch n <= maxShort {
case true:
buf[0] = byte(n)
copy(buf[1:], b)
case false:
m := n2m(n)
buf[0], buf[1], buf[2] = tagUsedLong, byte(m>>8), byte(m)
copy(buf[3:], b)
}
if p := n2padding(n); p != 0 {
copy(buf[rq-1-p:], zeros[:])
}
buf[rq-1] = cc
return a.writeAt(buf, h2off(h))
}
func (a *Allocator) verifyUnused(h, totalAtoms int64, tag byte, log func(error) bool, fast bool) (atoms, prev, next int64, err error) {
switch tag {
default:
panic("internal error")
case tagFreeShort:
var b [16]byte
off := h2off(h)
if err = a.read(b[:], off); err != nil {
return
}
if b[15] != tagFreeShort {
err = &ErrILSEQ{Type: ErrShortFreeTailTag, Off: off, Arg: int64(b[15])}
log(err)
return
}
atoms, prev, next = 1, b2h(b[1:]), b2h(b[8:])
case tagFreeLong:
var b [22]byte
off := h2off(h)
if err = a.read(b[:], off); err != nil {
return
}
atoms, prev, next = b2h(b[1:]), b2h(b[8:]), b2h(b[15:])
if fast {
return
}
if atoms < 2 {
err = &ErrILSEQ{Type: ErrLongFreeBlkTooShort, Off: off, Arg: int64(atoms)}
break
}
if h+atoms-1 > totalAtoms {
err = &ErrILSEQ{Type: ErrLongFreeBlkTooLong, Off: off, Arg: atoms}
break
}
if prev > totalAtoms {
err = &ErrILSEQ{Type: ErrLongFreePrevBeyondEOF, Off: off, Arg: next}
break
}
if next > totalAtoms {
err = &ErrILSEQ{Type: ErrLongFreeNextBeyondEOF, Off: off, Arg: next}
break
}
toff := h2off(h+atoms) - 8
if err = a.read(b[:8], toff); err != nil {
return
}
if b[7] != tag {
err = &ErrILSEQ{Type: ErrLongFreeTailTag, Off: off, Arg: int64(b[7])}
break
}
if s2 := b2h(b[:]); s2 != atoms {
err = &ErrILSEQ{Type: ErrVerifyTailSize, Off: off, Arg: atoms, Arg2: s2}
break
}
}
if err != nil {
log(err)
}
return
}
func (a *Allocator) verifyUsed(h, totalAtoms int64, tag byte, buf, ubuf []byte, log func(error) bool, fast bool) (compressed bool, dlen int, atoms, link int64, err error) {
var (
padding int
doff int64
padZeros [15]byte
tailBuf [16]byte
)
switch tag {
default: // Short used
dlen = int(tag)
atoms = int64((dlen+1)/16) + 1
padding = 15 - (dlen+1)%16
doff = h2off(h) + 1
case tagUsedLong:
off := h2off(h) + 1
var b2 [2]byte
if err = a.read(b2[:], off); err != nil {
return
}
dlen = m2n(int(b2[0])<<8 | int(b2[1]))
atoms = int64((dlen+3)/16) + 1
padding = 15 - (dlen+3)%16
doff = h2off(h) + 3
case tagUsedRelocated:
dlen = 7
atoms = 1
padding = 7
doff = h2off(h) + 1
case tagFreeShort, tagFreeLong:
panic("internal error")
}
if fast {
if tag == tagUsedRelocated {
dlen = 0
if err = a.read(buf[:7], doff); err != nil {
return
}
link = b2h(buf)
}
return false, dlen, atoms, link, nil
}
if ok := h+atoms-1 <= totalAtoms; !ok { // invalid last block
err = &ErrILSEQ{Type: ErrVerifyUsedSpan, Off: h2off(h), Arg: atoms}
log(err)
return
}
tailsz := 1 + padding
off := h2off(h) + 16*atoms - int64(tailsz)
if err = a.read(tailBuf[:tailsz], off); err != nil {
return false, 0, 0, 0, err
}
if ok := bytes.Equal(padZeros[:padding], tailBuf[:padding]); !ok {
err = &ErrILSEQ{Type: ErrVerifyPadding, Off: h2off(h)}
log(err)
return
}
var cc byte
switch cc = tailBuf[padding]; cc {
default:
err = &ErrILSEQ{Type: ErrTailTag, Off: h2off(h)}
log(err)
return
case tagCompressed:
compressed = true
if tag == tagUsedRelocated {
err = &ErrILSEQ{Type: ErrTailTag, Off: h2off(h)}
log(err)
return
}
fallthrough
case tagNotCompressed:
if err = a.read(buf[:dlen], doff); err != nil {
return false, 0, 0, 0, err
}
}
if cc == tagCompressed {
if ubuf, err = zappy.Decode(ubuf, buf[:dlen]); err != nil || len(ubuf) > maxRq {
err = &ErrILSEQ{Type: ErrDecompress, Off: h2off(h)}
log(err)
return
}
dlen = len(ubuf)
}
if tag == tagUsedRelocated {
link = b2h(buf)
if link == 0 {
err = &ErrILSEQ{Type: ErrNullReloc, Off: h2off(h)}
log(err)
return
}
if link > totalAtoms { // invalid last block
err = &ErrILSEQ{Type: ErrRelocBeyondEOF, Off: h2off(h), Arg: link}
log(err)
return
}
}
return
}
var nolog = func(error) bool { return false }
// Verify attempts to find any structural errors in a Filer wrt the
// organization of it as defined by Allocator. 'bitmap' is a scratch pad for
// necessary bookkeeping and will grow to at most to Allocator's
// Filer.Size()/128 (0,78%). Any problems found are reported to 'log' except
// non verify related errors like disk read fails etc. If 'log' returns false
// or the error doesn't allow to (reliably) continue, the verification process
// is stopped and an error is returned from the Verify function. Passing a nil
// log works like providing a log function always returning false. Any
// non-structural errors, like for instance Filer read errors, are NOT reported
// to 'log', but returned as the Verify's return value, because Verify cannot
// proceed in such cases. Verify returns nil only if it fully completed
// verifying Allocator's Filer without detecting any error.
//
// It is recommended to limit the number reported problems by returning false
// from 'log' after reaching some limit. Huge and corrupted DB can produce an
// overwhelming error report dataset.
//
// The verifying process will scan the whole DB at least 3 times (a trade
// between processing space and time consumed). It doesn't read the content of
// free blocks above the head/tail info bytes. If the 3rd phase detects lost
// free space, then a 4th scan (a faster one) is performed to precisely report
// all of them.
//
// If the DB/Filer to be verified is reasonably small, respective if its
// size/128 can comfortably fit within process's free memory, then it is
// recommended to consider using a MemFiler for the bit map.
//
// Statistics are returned via 'stats' if non nil. The statistics are valid
// only if Verify succeeded, ie. it didn't reported anything to log and it
// returned a nil error.
func (a *Allocator) Verify(bitmap Filer, log func(error) bool, stats *AllocStats) (err error) {
if log == nil {
log = nolog
}
n, err := bitmap.Size()
if err != nil {
return
}
if n != 0 {
return &ErrINVAL{"Allocator.Verify: bit map initial size non zero (%d)", n}
}
var bits int64
bitMask := [8]byte{1, 2, 4, 8, 16, 32, 64, 128}
byteBuf := []byte{0}
//DONE
// +performance, this implementation is hopefully correct but _very_
// naive, probably good as a prototype only. Use maybe a MemFiler
// "cache" etc.
// ----
// Turns out the OS caching is as effective as it can probably get.
bit := func(on bool, h int64) (wasOn bool, err error) {
m := bitMask[h&7]
off := h >> 3
var v byte
sz, err := bitmap.Size()
if err != nil {
return
}
if off < sz {
if n, err := bitmap.ReadAt(byteBuf, off); n != 1 {
return false, &ErrILSEQ{Type: ErrOther, Off: off, More: fmt.Errorf("Allocator.Verify - reading bitmap: %s", err)}
}
v = byteBuf[0]
}
switch wasOn = v&m != 0; on {
case true:
if !wasOn {
v |= m
bits++
}
case false:
if wasOn {
v ^= m
bits--
}
}
byteBuf[0] = v
if n, err := bitmap.WriteAt(byteBuf, off); n != 1 || err != nil {
return false, &ErrILSEQ{Type: ErrOther, Off: off, More: fmt.Errorf("Allocator.Verify - writing bitmap: %s", err)}
}
return
}
// Phase 1 - sequentially scan a.f to reliably determine block
// boundaries. Set a bit for every block start.
var (
buf, ubuf [maxRq]byte
prevH, h, atoms int64
wasOn bool
tag byte
st = AllocStats{
AllocMap: map[int64]int64{},
FreeMap: map[int64]int64{},
}
dlen int
)
fsz, err := a.f.Size()
if err != nil {
return
}
ok := fsz%16 == 0
totalAtoms := (fsz - fltSz) / atomLen
if !ok {
err = &ErrILSEQ{Type: ErrFileSize, Name: a.f.Name(), Arg: fsz}
log(err)
return
}
st.TotalAtoms = totalAtoms
prevTag := -1
lastH := int64(-1)
for h = 1; h <= totalAtoms; h += atoms {
prevH = h // For checking last block == used
off := h2off(h)
if err = a.read(buf[:1], off); err != nil {
return
}
switch tag = buf[0]; tag {
default: // Short used
fallthrough
case tagUsedLong, tagUsedRelocated:
var compressed bool
if compressed, dlen, atoms, _, err = a.verifyUsed(h, totalAtoms, tag, buf[:], ubuf[:], log, false); err != nil {
return
}
if compressed {
st.Compression++
}
st.AllocAtoms += atoms
switch {
case tag == tagUsedRelocated:
st.AllocMap[1]++
st.Relocations++
default:
st.AllocMap[atoms]++
st.AllocBytes += int64(dlen)
st.Handles++
}
case tagFreeShort, tagFreeLong:
if prevTag == tagFreeShort || prevTag == tagFreeLong {
err = &ErrILSEQ{Type: ErrAdjacentFree, Off: h2off(lastH), Arg: off}
log(err)
return
}
if atoms, _, _, err = a.verifyUnused(h, totalAtoms, tag, log, false); err != nil {
return
}
st.FreeMap[atoms]++
st.FreeAtoms += atoms
}
if wasOn, err = bit(true, h); err != nil {
return
}
if wasOn {
panic("internal error")
}
prevTag = int(tag)
lastH = h
}
if totalAtoms != 0 && (tag == tagFreeShort || tag == tagFreeLong) {
err = &ErrILSEQ{Type: ErrFreeTailBlock, Off: h2off(prevH)}
log(err)
return
}
// Phase 2 - check used blocks, turn off the map bit for every used
// block.
for h = 1; h <= totalAtoms; h += atoms {
off := h2off(h)
if err = a.read(buf[:1], off); err != nil {
return
}
var link int64
switch tag = buf[0]; tag {
default: // Short used
fallthrough
case tagUsedLong, tagUsedRelocated:
if _, _, atoms, link, err = a.verifyUsed(h, totalAtoms, tag, buf[:], ubuf[:], log, true); err != nil {
return
}
case tagFreeShort, tagFreeLong:
if atoms, _, _, err = a.verifyUnused(h, totalAtoms, tag, log, true); err != nil {
return
}
}
turnoff := true
switch tag {
case tagUsedRelocated:
if err = a.read(buf[:1], h2off(link)); err != nil {
return
}
switch linkedTag := buf[0]; linkedTag {
case tagFreeShort, tagFreeLong, tagUsedRelocated:
err = &ErrILSEQ{Type: ErrInvalidRelocTarget, Off: off, Arg: link}
log(err)
return
}
case tagFreeShort, tagFreeLong:
turnoff = false
}
if !turnoff {
continue
}
if wasOn, err = bit(false, h); err != nil {
return
}
if !wasOn {
panic("internal error")
}
}
// Phase 3 - using the flt check heads link to proper free blocks. For
// every free block, walk the list, verify the {next, prev} links and
// turn the respective map bit off. After processing all free lists,
// the map bits count should be zero. Otherwise there are "lost" free
// blocks.
var prev, next, fprev, fnext int64
rep := a.flt
for _, list := range rep {
prev, next = 0, list.head
for ; next != 0; prev, next = next, fnext {
if wasOn, err = bit(false, next); err != nil {
return
}
if !wasOn {
err = &ErrILSEQ{Type: ErrFLT, Off: h2off(next), Arg: h}
log(err)
return
}
off := h2off(next)
if err = a.read(buf[:1], off); err != nil {
return
}
switch tag = buf[0]; tag {
default:
panic("internal error")
case tagFreeShort, tagFreeLong:
if atoms, fprev, fnext, err = a.verifyUnused(next, totalAtoms, tag, log, true); err != nil {
return
}
if min := list.minSize; atoms < min {
err = &ErrILSEQ{Type: ErrFLTSize, Off: h2off(next), Arg: atoms, Arg2: min}
log(err)
return
}
if fprev != prev {
err = &ErrILSEQ{Type: ErrFreeChaining, Off: h2off(next)}
log(err)
return
}
}
}
}
if bits == 0 { // Verify succeeded
if stats != nil {
*stats = st
}
return
}
// Phase 4 - if after phase 3 there are lost free blocks, report all of
// them to 'log'
for i := range ubuf { // setup zeros for compares
ubuf[i] = 0
}
var off, lh int64
rem, err := bitmap.Size()
if err != nil {
return err
}
for rem != 0 {
rq := int(mathutil.MinInt64(64*1024, rem))
var n int
if n, err = bitmap.ReadAt(buf[:rq], off); n != rq {
return &ErrILSEQ{Type: ErrOther, Off: off, More: fmt.Errorf("bitmap ReadAt(size %d, off %#x): %s", rq, off, err)}
}
if !bytes.Equal(buf[:rq], ubuf[:rq]) {
for d, v := range buf[:rq] {
if v != 0 {
for i, m := range bitMask {
if v&m != 0 {
lh = 8*(off+int64(d)) + int64(i)
err = &ErrILSEQ{Type: ErrLostFreeBlock, Off: h2off(lh)}
log(err)
return
}
}
}
}
}
off += int64(rq)
rem -= int64(rq)
}
return
}
type fltSlot struct {
head int64
minSize int64
}
func (f fltSlot) String() string {
return fmt.Sprintf("head %#x, minSize %#x\n", f.head, f.minSize)
}
type flt [14]fltSlot
func (f *flt) init() {
sz := 1
for i := range *f {
f[i].minSize, f[i].head = int64(sz), 0
sz <<= 1
}
f[13].minSize = 4112
}
func (f *flt) load(fi Filer, off int64) (err error) {
b := bufs.GCache.Get(fltSz)
defer bufs.GCache.Put(b)
if _, err = fi.ReadAt(b[:], off); err != nil {
return
}
for i := range *f {
off := 8*i + 1
f[i].head = b2h(b[off:])
}
return
}
func (f *flt) find(rq int) (h int64) {
switch {
case rq < 1:
panic(rq)
case rq >= maxFLTRq:
h, f[13].head = f[13].head, 0
return
default:
g := f[mathutil.Log2Uint16(uint16(rq)):]
for i := range g {
p := &g[i]
if rq <= int(p.minSize) {
if h = p.head; h != 0 {
p.head = 0
return
}
}
}
return
}
}
func (f *flt) head(atoms int64) (h int64) {
switch {
case atoms < 1:
panic(atoms)
case atoms >= maxFLTRq:
return f[13].head
default:
lg := mathutil.Log2Uint16(uint16(atoms))
g := f[lg:]
for i := range g {
if atoms < g[i+1].minSize {
return g[i].head
}
}
panic("internal error")
}
}
func (f *flt) setHead(h, atoms int64, fi Filer) (err error) {
switch {
case atoms < 1:
panic(atoms)
case atoms >= maxFLTRq:
b := bufs.GCache.Get(7)
defer bufs.GCache.Put(b)
if _, err = fi.WriteAt(h2b(b[:], h), 8*13+1); err != nil {
return
}
f[13].head = h
return
default:
lg := mathutil.Log2Uint16(uint16(atoms))
g := f[lg:]
for i := range f {
if atoms < g[i+1].minSize {
b := bufs.GCache.Get(7)
defer bufs.GCache.Put(b)
if _, err = fi.WriteAt(h2b(b[:], h), 8*int64(i+lg)+1); err != nil {
return
}
g[i].head = h
return
}
}
panic("internal error")
}
}
func (f *flt) String() string {
a := []string{}
for i, v := range *f {
a = append(a, fmt.Sprintf("[%2d] %s", i, v))
}
return strings.Join(a, "")
}
type node struct {
b []byte
h int64
prev, next *node
}
type cache []*node
func (c *cache) get(n int) *node {
r, _ := c.get2(n)
return r
}
func (c *cache) get2(n int) (r *node, isZeroed bool) {
s := *c
lens := len(s)
if lens == 0 {
return &node{b: make([]byte, n, mathutil.Min(2*n, maxBuf))}, true
}
i := sort.Search(lens, func(x int) bool { return len(s[x].b) >= n })
if i == lens {
i--
s[i].b, isZeroed = make([]byte, n, mathutil.Min(2*n, maxBuf)), true
}
r = s[i]
r.b = r.b[:n]
copy(s[i:], s[i+1:])
s = s[:lens-1]
*c = s
return
}
func (c *cache) cget(n int) (r *node) {
r, ok := c.get2(n)
if ok {
return
}
for i := range r.b {
r.b[i] = 0
}
return
}
func (c *cache) size() (sz int64) {
for _, n := range *c {
sz += int64(cap(n.b))
}
return
}
func (c *cache) put(n *node) *node {
s := *c
n.b = n.b[:cap(n.b)]
lenb := len(n.b)
lens := len(s)
i := sort.Search(lens, func(x int) bool { return len(s[x].b) >= lenb })
s = append(s, nil)
copy(s[i+1:], s[i:])
s[i] = n
*c = s
return n
}
type lst struct {
front, back *node
}
func (l *lst) pushFront(n *node) *node {
if l.front == nil {
l.front, l.back, n.prev, n.next = n, n, nil, nil
return n
}
n.prev, n.next, l.front.prev, l.front = nil, l.front, n, n
return n
}
func (l *lst) remove(n *node) *node {
if n.prev == nil {
l.front = n.next
} else {
n.prev.next = n.next
}
if n.next == nil {
l.back = n.prev
} else {
n.next.prev = n.prev
}
n.prev, n.next = nil, nil
return n
}
func (l *lst) removeBack() *node {
return l.remove(l.back)
}
func (l *lst) moveToFront(n *node) *node {
return l.pushFront(l.remove(n))
}
func (l *lst) size() (sz int64) {
for n := l.front; n != nil; n = n.next {
sz += int64(cap(n.b))
}
return
}
func cacheAudit(m map[int64]*node, l *lst) (err error) {
cnt := 0
for h, n := range m {
if g, e := n.h, h; g != e {
return fmt.Errorf("cacheAudit: invalid node handle %d != %d", g, e)
}
if cnt, err = l.audit(n, true); err != nil {
return
}
}
if g, e := cnt, len(m); g != e {
return fmt.Errorf("cacheAudit: invalid cache size %d != %d", g, e)
}
return
}
func (l *lst) audit(n *node, onList bool) (cnt int, err error) {
if !onList && (n.prev != nil || n.next != nil) {
return -1, fmt.Errorf("lst.audit: free node with non nil linkage")
}
if l.front == nil && l.back != nil || l.back == nil && l.front != nil {
return -1, fmt.Errorf("lst.audit: one of .front/.back is nil while the other is non nil")
}
if l.front == l.back && l.front != nil {
x := l.front
if x.prev != nil || x.next != nil {
return -1, fmt.Errorf("lst.audit: single node has non nil linkage")
}
if onList && x != n {
return -1, fmt.Errorf("lst.audit: single node is alien")
}
}
seen := false
var prev *node
x := l.front
for x != nil {
cnt++
if x.prev != prev {
return -1, fmt.Errorf("lst.audit: broken .prev linkage")
}
if x == n {
seen = true
}
prev = x
x = x.next
}
if prev != l.back {
return -1, fmt.Errorf("lst.audit: broken .back linkage")
}
if onList && !seen {
return -1, fmt.Errorf("lst.audit: node missing in list")
}
if !onList && seen {
return -1, fmt.Errorf("lst.audit: node should not be on the list")
}
return
}
|