1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lldb implements a low level database engine. The database model used
// could be considered a specific implementation of some small(est)
// intersection of models listed in [1]. As a settled term is lacking, it'll be
// called here a 'Virtual memory model' (VMM).
//
// Changelog
//
// 2016-07-12: v1.0.1 adds a license for testdata/fortunes.txt.
//
// 2016-07-11: First standalone release v1.0.0 of the package previously
// published as experimental (github.com/cznic/exp/lldb).
//
// Filers
//
// A Filer is an abstraction of storage. A Filer may be a part of some process'
// virtual address space, an OS file, a networked, remote file etc. Persistence
// of the storage is optional, opaque to VMM and it is specific to a concrete
// Filer implementation.
//
// Space management
//
// Mechanism to allocate, reallocate (resize), deallocate (and later reclaim
// the unused) contiguous parts of a Filer, called blocks. Blocks are
// identified and referred to by a handle, an int64.
//
// BTrees
//
// In addition to the VMM like services, lldb provides volatile and
// non-volatile BTrees. Keys and values of a BTree are limited in size to 64kB
// each (a bit more actually). Support for larger keys/values, if desired, can
// be built atop a BTree to certain limits.
//
// Handles vs pointers
//
// A handle is the abstracted storage counterpart of a memory address. There
// is one fundamental difference, though. Resizing a block never results in a
// change to the handle which refers to the resized block, so a handle is more
// akin to an unique numeric id/key. Yet it shares one property of pointers -
// handles can be associated again with blocks after the original handle block
// was deallocated. In other words, a handle uniqueness domain is the state of
// the database and is not something comparable to e.g. an ever growing
// numbering sequence.
//
// Also, as with memory pointers, dangling handles can be created and blocks
// overwritten when such handles are used. Using a zero handle to refer to a
// block will not panic; however, the resulting error is effectively the same
// exceptional situation as dereferencing a nil pointer.
//
// Blocks
//
// Allocated/used blocks, are limited in size to only a little bit more than
// 64kB. Bigger semantic entities/structures must be built in lldb's client
// code. The content of a block has no semantics attached, it's only a fully
// opaque `[]byte`.
//
// Scalars
//
// Use of "scalars" applies to EncodeScalars, DecodeScalars and Collate. Those
// first two "to bytes" and "from bytes" functions are suggested for handling
// multi-valued Allocator content items and/or keys/values of BTrees (using
// Collate for keys). Types called "scalar" are:
//
// nil (the typeless one)
// bool
// all integral types: [u]int8, [u]int16, [u]int32, [u]int, [u]int64
// all floating point types: float32, float64
// all complex types: complex64, complex128
// []byte (64kB max)
// string (64kb max)
//
// Specific implementations
//
// Included are concrete implementations of some of the VMM interfaces included
// to ease serving simple client code or for testing and possibly as an
// example. More details in the documentation of such implementations.
//
// [1]: http://en.wikipedia.org/wiki/Database_model
package lldb
const (
fltSz = 0x70 // size of the FLT
maxShort = 251
maxRq = 65787
maxFLTRq = 4112
maxHandle = 1<<56 - 1
atomLen = 16
tagUsedLong = 0xfc
tagUsedRelocated = 0xfd
tagFreeShort = 0xfe
tagFreeLong = 0xff
tagNotCompressed = 0
tagCompressed = 1
)
// Content size n -> blocksize in atoms.
func n2atoms(n int) int {
if n > maxShort {
n += 2
}
return (n+1)/16 + 1
}
// Content size n -> number of padding zeros.
func n2padding(n int) int {
if n > maxShort {
n += 2
}
return 15 - (n+1)&15
}
// Handle <-> offset
func h2off(h int64) int64 { return (h + 6) * 16 }
func off2h(off int64) int64 { return off/16 - 6 }
// Get a 7B int64 from b
func b2h(b []byte) (h int64) {
for _, v := range b[:7] {
h = h<<8 | int64(v)
}
return
}
// Put a 7B int64 into b
func h2b(b []byte, h int64) []byte {
for i := range b[:7] {
b[i], h = byte(h>>48), h<<8
}
return b
}
// Content length N (must be in [252, 65787]) to long used block M field.
func n2m(n int) (m int) {
return n % 0x10000
}
// Long used block M (must be in [0, 65535]) field to content length N.
func m2n(m int) (n int) {
if m <= maxShort {
m += 0x10000
}
return m
}
func bpack(a []byte) []byte {
if cap(a) > len(a) {
return append([]byte(nil), a...)
}
return a
}
|