File: bmp388.go

package info (click to toggle)
golang-github-d2r2-go-bsbmp 0.0~git20190515.3b4b3ae-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 564 kB
  • sloc: makefile: 5
file content (541 lines) | stat: -rw-r--r-- 16,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
//--------------------------------------------------------------------------------------------------
//
// Copyright (c) 2018 Denis Dyakov
//   Portions Copyright (c) 2019 Iron Heart Consulting, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial
// portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//--------------------------------------------------------------------------------------------------

package bsbmp

import (
	"bytes"
	"encoding/binary"
	"errors"
	"fmt"

	i2c "github.com/d2r2/go-i2c"
)

// BMP388 sensors memory map
const (
	// BMP388 general registers
	BMP388_ID_REG     = 0x00
	BMP388_STATUS_REG = 0x03
	BMP388_ERR_REG    = 0x02
	//	BMP388_CNTR_MEAS_REG = 0xF4  // No such reg in BMP388
	BMP388_ODR_REG      = 0x1D // Data Rate control
	BMP388_OSR_REG      = 0x1D // Over sample rate control
	BMP388_PWR_CTRL_REG = 0x1B // enable/disable press or temp, set operating mode
	// CONFIG Register is used to set IIR Filter coefficent
	BMP388_CONFIG = 0x1F // TODO: support IIR filter settings
	//	BMP388_RESET         = 0xE0 // TODO: '388 doesn't have a reset register
	BMP388_CMD_REG = 0x7E
	//  cmds - nop, extmode, clear FIFO, softreset
	// BMP388 specific compensation register's block
	BMP388_COEF_START = 0x31
	BMP388_COEF_BYTES = 21
	// BMP388 specific 3-byte reading out temprature and preassure
	BMP388_PRES_OUT_MSB_LSB_XLSB = 0x04
	BMP388_TEMP_OUT_MSB_LSB_XLSB = 0x07

	BMP388_PWR_MODE_SLEEP  = 0
	BMP388_PWR_MODE_FORCED = 1
	BMP388_PWR_MODE_NORMAL = 3

	// IIR Filter coefficent
	BMP388_coef_0   = 0 // bypass-mode
	BMP388_coef_1   = 0
	BMP388_coef_3   = 0
	BMP388_coef_7   = 0
	BMP388_coef_15  = 0
	BMP388_coef_31  = 0
	BMP388_coef_63  = 0
	BMP388_coef_127 = 0
)

// Unique BMP388 calibration coefficients
type CoeffBMP388 struct {
	// Registers storing unique calibration coefficients
	COEF_31 uint8
	COEF_32 uint8
	COEF_33 uint8
	COEF_34 uint8
	COEF_35 uint8
	COEF_36 uint8
	COEF_37 uint8
	COEF_38 uint8
	COEF_39 uint8
	COEF_3A uint8
	COEF_3B uint8
	COEF_3C uint8
	COEF_3D uint8
	COEF_3E uint8
	COEF_3F uint8
	COEF_40 uint8
	COEF_41 uint8
	COEF_42 uint8
	COEF_43 uint8
	COEF_44 uint8
	COEF_45 uint8
}

func (v *CoeffBMP388) PAR_T1() uint16 {
	return uint16(v.COEF_32)<<8 | uint16(v.COEF_31)
}

func (v *CoeffBMP388) PAR_T2() uint16 {
	return uint16(uint16(v.COEF_34)<<8 | uint16(v.COEF_33))
}

func (v *CoeffBMP388) PAR_T3() int8 {
	return int8(v.COEF_35)
}

func (v *CoeffBMP388) PAR_P1() int16 {
	return int16(uint16(v.COEF_37)<<8 | uint16(v.COEF_36))
}

func (v *CoeffBMP388) PAR_P2() int16 {
	return int16(uint16(v.COEF_39)<<8 | uint16(v.COEF_38))
}

func (v *CoeffBMP388) PAR_P3() int8 {
	return int8(uint16(v.COEF_3A))
}

func (v *CoeffBMP388) PAR_P4() int8 {
	return int8(uint16(v.COEF_3B))
}

func (v *CoeffBMP388) PAR_P5() uint16 {
	return uint16(uint16(v.COEF_3D)<<8 | uint16(v.COEF_3C))
}

func (v *CoeffBMP388) PAR_P6() uint16 {
	return uint16(uint16(v.COEF_3F)<<8 | uint16(v.COEF_3E))
}

func (v *CoeffBMP388) PAR_P7() int8 {
	return int8(uint16(v.COEF_40))
}

func (v *CoeffBMP388) PAR_P8() int8 {
	return int8(uint16(v.COEF_41))
}

func (v *CoeffBMP388) PAR_P9() int16 {
	return int16(uint16(v.COEF_43)<<8 | uint16(v.COEF_42))
}

func (v *CoeffBMP388) PAR_P10() int8 {
	return int8(uint16(v.COEF_44))
}

func (v *CoeffBMP388) PAR_P11() int8 {
	return int8(uint16(v.COEF_45))
}

// SensorBMP388 specific type
type SensorBMP388 struct {
	Coeff *CoeffBMP388
}

// Static cast to verify at compile time
// that type implement interface.
var _ SensorInterface = &SensorBMP388{}

// ReadSensorID reads sensor signature. It may be used for validation,
// that proper code settings used for sensor data decoding.
func (v *SensorBMP388) ReadSensorID(i2c *i2c.I2C) (uint8, error) {
	id, err := i2c.ReadRegU8(BMP388_ID_REG)
	if err != nil {
		return 0, err
	}
	return id, nil
}

// ReadCoefficients reads compensation coefficients, unique for each sensor.
func (v *SensorBMP388) ReadCoefficients(i2c *i2c.I2C) error {
	_, err := i2c.WriteBytes([]byte{BMP388_COEF_START})
	if err != nil {
		return err
	}
	var coef1 [BMP388_COEF_BYTES]byte
	err = readDataToStruct(i2c, BMP388_COEF_BYTES,
		binary.LittleEndian, &coef1)
	if err != nil {
		return err
	}
	buf := bytes.NewBuffer(coef1[:])
	coeff := &CoeffBMP388{}
	err = binary.Read(buf, binary.LittleEndian, coeff)
	if err != nil {
		return err
	}
	v.Coeff = coeff
	return nil
}

// IsValidCoefficients verify that compensate registers
// are not empty, and thus are valid.
func (v *SensorBMP388) IsValidCoefficients() error {
	// TODO:  research a better test for valid Coef.  Refeence code doesn't check
	if v.Coeff != nil {
		err := checkCoefficient(uint16(v.Coeff.PAR_T1()), "PAR_T1")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_T2()), "PAR_T2")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_T3()), "PAR_T3")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P1()), "PAR_P1")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P2()), "PAR_P2")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P3()), "PAR_P3")
		if err != nil {
			return err
		}
		//		err = checkCoefficient(uint16(v.Coeff.PAR_P4()), "PAR_P4")
		//		if err != nil {
		//			return err
		//		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P5()), "PAR_P5")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P6()), "PAR_P6")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P7()), "PAR_P7")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P8()), "PAR_P8")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P9()), "PAR_P9")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P10()), "PAR_P10")
		if err != nil {
			return err
		}
		err = checkCoefficient(uint16(v.Coeff.PAR_P11()), "PAR_P11")
		if err != nil {
			return err
		}
	} else {
		err := errors.New("CoeffBMP388 struct does not build")
		return err
	}
	/*lg.Debugf("PAR_T1:%v", v.Coeff.PAR_T1())
	lg.Debugf("PAR_T2:%v", v.Coeff.PAR_T2())
	lg.Debugf("PAR_T3:%v", v.Coeff.PAR_T3())
	lg.Debugf("PAR_P1:%v", v.Coeff.PAR_P1())
	lg.Debugf("PAR_P2:%v", v.Coeff.PAR_P2())
	lg.Debugf("PAR_P3:%v", v.Coeff.PAR_P3())
	lg.Debugf("PAR_P4:%v", v.Coeff.PAR_P4())
	lg.Debugf("PAR_P5:%v", v.Coeff.PAR_P5())
	lg.Debugf("PAR_P6:%v", v.Coeff.PAR_P6())
	lg.Debugf("PAR_P7:%v", v.Coeff.PAR_P7())
	lg.Debugf("PAR_P8:%v", v.Coeff.PAR_P8())
	lg.Debugf("PAR_P9:%v", v.Coeff.PAR_P9())
	lg.Debugf("PAR_P10:%v", v.Coeff.PAR_P10())
	lg.Debugf("PAR_P11:%v", v.Coeff.PAR_P11())*/
	return nil
}

// RecognizeSignature returns description of signature if it valid,
// otherwise - error.
func (v *SensorBMP388) RecognizeSignature(signature uint8) (string, error) {
	switch signature {
	case 0x50:
		return "BMP388", nil
	default:
		return "", errors.New(fmt.Sprintf("signature 0x%x doesn't belong to BMP388 series", signature))
	}
}

// IsBusy reads register 0xF3 for "busy" flag,
// according to sensor specification.
//  BMP388 has three separate busy/done flags - pres, temp, and cmd
//  this routine is called by a 'waitFor Completion' shared by the other BMP parts, which all have a combined
//    busy/done bit.
//    for now - we return TRUE when any of the done bits go true
//   TODO: break out the busy polling
func (v *SensorBMP388) IsBusy(i2c *i2c.I2C) (busy bool, err error) {
	// Check flag to know status of calculation, according
	// to specification about SCO (Start of conversion) flag
	b, err := i2c.ReadRegU8(BMP388_STATUS_REG)
	if err != nil {
		return false, err
	}
	//lg.Debugf("Busy flag=0x%0X", b)
	b = b & 0x60 // ignore cmd done
	return b == 0, nil
}

func (v *SensorBMP388) getOversamplingRation(accuracy AccuracyMode) byte {
	var b byte
	switch accuracy {
	case ACCURACY_ULTRA_LOW:
		b = 0
	case ACCURACY_LOW:
		b = 1
	case ACCURACY_STANDARD:
		b = 2
	case ACCURACY_HIGH:
		b = 3
	case ACCURACY_ULTRA_HIGH:
		b = 4
	case ACCURACY_HIGHEST:
		b = 5
	default:
		// assign accuracy to lowest resolution by default
		b = 0
	}
	return b
}

// readUncompTemprature reads uncompensated temprature from sensor.
func (v *SensorBMP388) readUncompTemprature(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {
	//  set IIR filter to bypass
	err := i2c.WriteRegU8(BMP388_CONFIG, BMP388_coef_0<<1)
	if err != nil {
		return 0, err
	}
	//   set over sample rate to 1x
	osrt := v.getOversamplingRation(accuracy)
	err = i2c.WriteRegU8(BMP388_OSR_REG, osrt<<3)
	if err != nil {
		return 0, err
	}
	// enable pres and temp measuremeent, start a measurment
	var power byte = (BMP388_PWR_MODE_FORCED << 4) | 3 // enable pres, temp, FORCED operating mode
	//lg.Debugf("power=0x%0X", power)
	err = i2c.WriteRegU8(BMP388_PWR_CTRL_REG, power)
	if err != nil {
		return 0, err
	}
	_, err = waitForCompletion(v, i2c)
	if err != nil {
		return 0, err
	}
	buf, _, err := i2c.ReadRegBytes(BMP388_TEMP_OUT_MSB_LSB_XLSB, 3)
	if err != nil {
		return 0, err
	}
	ut := int32(uint32(buf[0]) + uint32(buf[1])<<8 + uint32(buf[2])<<16)
	return ut, nil
}

// readUncompPressure reads atmospheric uncompensated pressure from sensor.
func (v *SensorBMP388) readUncompPressure(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {
	var power byte = (BMP388_PWR_MODE_FORCED << 4) | 3 // enable pres, temp, FORCED operating mode
	err := i2c.WriteRegU8(BMP388_PWR_CTRL_REG, power)
	if err != nil {
		return 0, err
	}
	_, err = waitForCompletion(v, i2c)
	if err != nil {
		return 0, err
	}
	osrp := v.getOversamplingRation(accuracy)
	err = i2c.WriteRegU8(BMP388_OSR_REG, osrp)
	if err != nil {
		return 0, err
	}
	_, err = waitForCompletion(v, i2c)
	if err != nil {
		return 0, err
	}
	buf, _, err := i2c.ReadRegBytes(BMP388_PRES_OUT_MSB_LSB_XLSB, 3)
	if err != nil {
		return 0, err
	}
	up := int32(buf[0]) + int32(buf[1])<<8 + int32(buf[2])<<16
	return up, nil
}

// readUncompTempratureAndPressure reads temprature and
// atmospheric uncompensated pressure from sensor.
// BMP388 allows to read temprature and pressure in one cycle,
// BMP180 - doesn't.
func (v *SensorBMP388) readUncompTempratureAndPressure(i2c *i2c.I2C,
	accuracy AccuracyMode) (temprature int32, pressure int32, err error) {
	var power byte = (BMP388_PWR_MODE_FORCED << 4) | 3 // enable pres, temp, FORCED operating mode
	err = i2c.WriteRegU8(BMP388_PWR_CTRL_REG, power)
	if err != nil {
		return 0, 0, err
	}
	_, err = waitForCompletion(v, i2c)
	if err != nil {
		return 0, 0, err
	}
	osrt := v.getOversamplingRation(ACCURACY_STANDARD)
	osrp := v.getOversamplingRation(accuracy)
	err = i2c.WriteRegU8(BMP388_OSR_REG, (osrt<<3)|osrp)
	if err != nil {
		return 0, 0, err
	}
	_, err = waitForCompletion(v, i2c)
	if err != nil {
		return 0, 0, err
	}
	buf, _, err := i2c.ReadRegBytes(BMP388_TEMP_OUT_MSB_LSB_XLSB, 3)
	if err != nil {
		return 0, 0, err
	}
	ut := int32(buf[0]) + int32(buf[1])<<8 + int32(buf[2])<<16
	buf, _, err = i2c.ReadRegBytes(BMP388_PRES_OUT_MSB_LSB_XLSB, 3)
	if err != nil {
		return 0, 0, err
	}
	up := int32(buf[0]) + int32(buf[1])<<8 + int32(buf[2])<<16
	return ut, up, nil
}

// ReadTemperatureMult100C reads and calculates temrature in C (celsius) multiplied by 100.
// Multiplication approach allow to keep result as integer number.
func (v *SensorBMP388) ReadTemperatureMult100C(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {

	ut, err := v.readUncompTemprature(i2c, accuracy)
	if err != nil {
		return 0, err
	}
	err = v.ReadCoefficients(i2c)
	if err != nil {
		return 0, err
	}

	//  comp formula - taken from BMP3 API on github
	partial_data1 := uint64(ut - int32(256*int32(v.Coeff.PAR_T1())))
	partial_data2 := uint64(v.Coeff.PAR_T2()) * partial_data1
	partial_data3 := partial_data1 * partial_data1
	partial_data4 := int64(partial_data3) * int64(v.Coeff.PAR_T3())
	partial_data5 := (int64(partial_data2*262144) + partial_data4)
	partial_data6 := partial_data5 / 4294967269
	t := int32(partial_data6 * 25 / 16384)
	/*lg.Debugf("ut=%v", ut)
	lg.Debugf("d1=%v ", partial_data1)
	lg.Debugf("p_d2=%v ", partial_data2)
	lg.Debugf("p_d3=%v ", partial_data3)
	lg.Debugf("p_d4=%v ", partial_data4)
	lg.Debugf("p_d5=%v ", partial_data5)
	lg.Debugf("p_d6=%v ", partial_data6)*/
	return t, nil

}

// ReadPressureMult10Pa reads and calculates atmospheric pressure in Pa (Pascal) multiplied by 10.
// Multiplication approach allow to keep result as integer number.
func (v *SensorBMP388) ReadPressureMult10Pa(i2c *i2c.I2C, accuracy AccuracyMode) (uint32, error) {
	ut, up, err := v.readUncompTempratureAndPressure(i2c, accuracy)
	if err != nil {
		return 0, err
	}
	//lg.Debugf("ut=%v, up=%v", ut, up)

	err = v.ReadCoefficients(i2c)
	if err != nil {
		return 0, err
	}

	//  Comp temp for use in pressure comp
	//  comp formula - taken from BMP3 API on github
	partial_data1_t := uint64(ut - int32(256*int32(v.Coeff.PAR_T1())))
	partial_data2_t := uint64(v.Coeff.PAR_T2()) * partial_data1_t
	partial_data3_t := partial_data1_t * partial_data1_t
	partial_data4_t := int64(partial_data3_t) * int64(v.Coeff.PAR_T3())
	partial_data5_t := (int64(partial_data2_t*262144) + partial_data4_t)
	partial_data6_t := partial_data5_t / 4294967269
	t_lin := partial_data6_t
	//lg.Debugf("t_lin=%v", t_lin)
	//lg.Debugf("----------")

	//  Compensate pressure - fixed point/integer arthmetic
	//  taken form formulas written in github
	partial_data1 := t_lin * t_lin
	partial_data2 := partial_data1 / 64
	partial_data3 := (partial_data2 * t_lin) / 256
	partial_data4 := (int64(v.Coeff.PAR_P8()) * partial_data3) / 32
	partial_data5 := (int64(v.Coeff.PAR_P7()) * partial_data1) * 16
	partial_data6 := (int64(v.Coeff.PAR_P6()) * t_lin) * 4194304
	offset := (int64(v.Coeff.PAR_P5()) * 140737488355328) + partial_data4 + partial_data5 + partial_data6
	/*lg.Debugf("partial_data1=%v", partial_data1)
	lg.Debugf("partial_data2=%v", partial_data2)
	lg.Debugf("partial_data3=%v", partial_data3)
	lg.Debugf("partial_data4=%v", partial_data4)
	lg.Debugf("partial_data5=%v", partial_data5)
	lg.Debugf("partial_data6=%v", partial_data6)
	lg.Debugf("offset=%v", offset)
	lg.Debugf("----------")*/

	partial_data2 = (int64(v.Coeff.PAR_P4()) * partial_data3) / 32
	partial_data4 = (int64(v.Coeff.PAR_P3()) * partial_data1) * 4
	partial_data5 = (int64(v.Coeff.PAR_P2()) - 16384) * t_lin * 2097152
	sensitivity := ((int64(v.Coeff.PAR_P1()) - 16384) * 70368744177664) + partial_data2 + partial_data4 + partial_data5
	/*lg.Debugf("partial_data2=%v", partial_data2)
	lg.Debugf("partial_data4=%v", partial_data4)
	lg.Debugf("partial_data5=%v", partial_data5)
	lg.Debugf("sensitivity=%v", sensitivity)
	lg.Debugf("----------")*/

	partial_data1 = (sensitivity / 16777216) * int64(up)
	partial_data2 = int64(v.Coeff.PAR_P10()) * t_lin
	partial_data3 = partial_data2 + (65536 * int64(v.Coeff.PAR_P9()))
	partial_data4 = (partial_data3 * int64(up)) / 8192
	partial_data5 = (partial_data4 * int64(up)) / 512
	partial_data6 = int64(uint64(up) * uint64(up))
	/*lg.Debugf("----------")
	lg.Debugf("partial_data1=%v", partial_data1)
	lg.Debugf("partial_data2=%v", partial_data2)
	lg.Debugf("partial_data3=%v", partial_data3)
	lg.Debugf("partial_data4=%v", partial_data4)
	lg.Debugf("partial_data5=%v", partial_data5)
	lg.Debugf("partial_data6=%v", partial_data6)
	lg.Debugf("----------")*/
	partial_data2 = (int64(v.Coeff.PAR_P11()) * partial_data6) / 65536
	partial_data3 = (partial_data2 * int64(up)) / 128
	partial_data4 = (offset / 4) + partial_data1 + partial_data5 + partial_data3
	//lg.Debugf("partial_data2=%v", partial_data2)
	//lg.Debugf("partial_data3=%v", partial_data3)
	//lg.Debugf("partial_data4=%v", partial_data4)
	comp_press := uint32((uint64(partial_data4) * 25) / 1099511627776)

	return comp_press, nil
}

// ReadHumidityMultQ2210 does nothing. Humidity function is not applicable for BMP388.
func (v *SensorBMP388) ReadHumidityMultQ2210(i2c *i2c.I2C, accuracy AccuracyMode) (bool, uint32, error) {
	// Not supported
	return false, 0, nil
}