1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
//--------------------------------------------------------------------------------------------------
//
// Copyright (c) 2018 Denis Dyakov
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial
// portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//--------------------------------------------------------------------------------------------------
package bsbmp
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
i2c "github.com/d2r2/go-i2c"
)
// BME280 sensors memory map
const (
// BME280 general registers
BME280_ID_REG = 0xD0
BME280_CTRL_HUM = 0xF2
BME280_STATUS = 0xF3
BME280_CTRL_MEAS = 0xF4
BME280_CONFIG = 0xF5 // TODO: support IIR filter settings
BME280_RESET = 0xE0
// BME280 specific compensation register's blocks
BME280_COEF_PART1_START = 0x88
BME280_COEF_PART1_BYTES = 12 * 2
BME280_COEF_PART2_START = 0xA1
BME280_COEF_PART2_BYTES = 1
BME280_COEF_PART3_START = 0xE1
BME280_COEF_PART3_BYTES = 1*2 + 5
// BME280 specific 3-byte reading out temprature and preassure
BME280_PRESS_OUT_MSB_LSB_XLSB = 0xF7
BME280_TEMP_OUT_MSB_LSB_XLSB = 0xFA
BME280_HUM_OUT_MSB_LSB = 0xFD
)
// Unique BME280 calibration coefficients
type CoeffBME280 struct {
// Registers storing unique calibration coefficients.
// Block 1
COEF_88 uint8
COEF_89 uint8
COEF_8A uint8
COEF_8B uint8
COEF_8C uint8
COEF_8D uint8
COEF_8E uint8
COEF_8F uint8
COEF_90 uint8
COEF_91 uint8
COEF_92 uint8
COEF_93 uint8
COEF_94 uint8
COEF_95 uint8
COEF_96 uint8
COEF_97 uint8
COEF_98 uint8
COEF_99 uint8
COEF_9A uint8
COEF_9B uint8
COEF_9C uint8
COEF_9D uint8
COEF_9E uint8
COEF_9F uint8
// Block 2
COEF_A1 uint8
// Block 3
COEF_E1 uint8
COEF_E2 uint8
COEF_E3 uint8
COEF_E4 uint8
COEF_E5 uint8
COEF_E6 uint8
COEF_E7 uint8
}
func (v *CoeffBME280) dig_T1() uint16 {
return uint16(v.COEF_89)<<8 | uint16(v.COEF_88)
}
func (v *CoeffBME280) dig_T2() int16 {
return int16(uint16(v.COEF_8B)<<8 | uint16(v.COEF_8A))
}
func (v *CoeffBME280) dig_T3() int16 {
return int16(uint16(v.COEF_8D)<<8 | uint16(v.COEF_8C))
}
func (v *CoeffBME280) dig_P1() uint16 {
return uint16(v.COEF_8F)<<8 | uint16(v.COEF_8E)
}
func (v *CoeffBME280) dig_P2() int16 {
return int16(uint16(v.COEF_91)<<8 | uint16(v.COEF_90))
}
func (v *CoeffBME280) dig_P3() int16 {
return int16(uint16(v.COEF_93)<<8 | uint16(v.COEF_92))
}
func (v *CoeffBME280) dig_P4() int16 {
return int16(uint16(v.COEF_95)<<8 | uint16(v.COEF_94))
}
func (v *CoeffBME280) dig_P5() int16 {
return int16(uint16(v.COEF_97)<<8 | uint16(v.COEF_96))
}
func (v *CoeffBME280) dig_P6() int16 {
return int16(uint16(v.COEF_99)<<8 | uint16(v.COEF_98))
}
func (v *CoeffBME280) dig_P7() int16 {
return int16(uint16(v.COEF_9B)<<8 | uint16(v.COEF_9A))
}
func (v *CoeffBME280) dig_P8() int16 {
return int16(uint16(v.COEF_9D)<<8 | uint16(v.COEF_9C))
}
func (v *CoeffBME280) dig_P9() int16 {
return int16(uint16(v.COEF_9F)<<8 | uint16(v.COEF_9E))
}
func (v *CoeffBME280) dig_H1() uint8 {
return uint8(v.COEF_A1)
}
func (v *CoeffBME280) dig_H2() int16 {
return int16(uint16(v.COEF_E2)<<8 | uint16(v.COEF_E1))
}
func (v *CoeffBME280) dig_H3() uint8 {
return uint8(v.COEF_E3)
}
func (v *CoeffBME280) dig_H4() int16 {
return int16(uint16(v.COEF_E4)<<4 | uint16(v.COEF_E5&0x0F))
}
func (v *CoeffBME280) dig_H5() int16 {
return int16(uint16(v.COEF_E6)<<4 | uint16((v.COEF_E5>>4)&0x0F))
}
func (v *CoeffBME280) dig_H6() int8 {
return int8(v.COEF_E7)
}
// SensorBME280 specific type
type SensorBME280 struct {
Coeff *CoeffBME280
}
// Static cast to verify at compile time
// that type implement interface.
var _ SensorInterface = &SensorBME280{}
// ReadSensorID reads sensor signature. It may be used for validation,
// that proper code settings used for sensor data decoding.
func (v *SensorBME280) ReadSensorID(i2c *i2c.I2C) (uint8, error) {
id, err := i2c.ReadRegU8(BME280_ID_REG)
if err != nil {
return 0, err
}
return id, nil
}
// ReadCoefficients reads compensation coefficients, unique for each sensor.
func (v *SensorBME280) ReadCoefficients(i2c *i2c.I2C) error {
// read coefficients #1
_, err := i2c.WriteBytes([]byte{BME280_COEF_PART1_START})
if err != nil {
return err
}
var coef1 [BME280_COEF_PART1_BYTES]byte
err = readDataToStruct(i2c, BME280_COEF_PART1_BYTES,
binary.LittleEndian, &coef1)
if err != nil {
return err
}
// read coefficients #2
_, err = i2c.WriteBytes([]byte{BME280_COEF_PART2_START})
if err != nil {
return err
}
var coef2 [BME280_COEF_PART2_BYTES]byte
err = readDataToStruct(i2c, BME280_COEF_PART2_BYTES,
binary.LittleEndian, &coef2)
if err != nil {
return err
}
// read coefficients #3
_, err = i2c.WriteBytes([]byte{BME280_COEF_PART3_START})
if err != nil {
return err
}
var coef3 [BME280_COEF_PART3_BYTES]byte
err = readDataToStruct(i2c, BME280_COEF_PART3_BYTES,
binary.LittleEndian, &coef3)
if err != nil {
return err
}
// combine coefficients altogether in single structure
arr := coef1[:]
arr = append(arr, coef2[:]...)
arr = append(arr, coef3[:]...)
buf := bytes.NewBuffer(arr)
coeff := &CoeffBME280{}
err = binary.Read(buf, binary.LittleEndian, coeff)
if err != nil {
return err
}
v.Coeff = coeff
return nil
}
// IsValidCoefficients verify that compensate registers
// are not empty, and thus are valid.
func (v *SensorBME280) IsValidCoefficients() error {
if v.Coeff != nil {
err := checkCoefficient(v.Coeff.dig_T1(), "dig_T1")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_T2()), "dig_T2")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_T3()), "dig_T3")
if err != nil {
return err
}
err = checkCoefficient(v.Coeff.dig_P1(), "dig_P1")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P2()), "dig_P2")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P3()), "dig_P3")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P4()), "dig_P4")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P5()), "dig_P5")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P6()), "dig_P6")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P7()), "dig_P7")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P8()), "dig_P8")
if err != nil {
return err
}
err = checkCoefficient(uint16(v.Coeff.dig_P9()), "dig_P9")
if err != nil {
return err
}
} else {
err := errors.New("CoeffBME280 struct does not build")
return err
}
return nil
}
// RecognizeSignature returns description of signature if it valid,
// otherwise - error.
func (v *SensorBME280) RecognizeSignature(signature uint8) (string, error) {
switch signature {
case 0x60:
return "BME280", nil
default:
return "", errors.New(fmt.Sprintf("signature 0x%x doesn't belong to BME280 series", signature))
}
}
// IsBusy reads register 0xF3 for "busy" flag,
// according to sensor specification.
func (v *SensorBME280) IsBusy(i2c *i2c.I2C) (busy bool, err error) {
// Check flag to know status of calculation, according
// to specification about SCO (Start of conversion) flag
b, err := i2c.ReadRegU8(BME280_STATUS)
if err != nil {
return false, err
}
b = b & 0x8
lg.Debugf("Busy flag=0x%0X", b)
return b != 0, nil
}
func (v *SensorBME280) getOversamplingRation(accuracy AccuracyMode) byte {
var b byte
switch accuracy {
case ACCURACY_ULTRA_LOW:
b = 1
case ACCURACY_LOW:
b = 2
case ACCURACY_STANDARD:
b = 3
case ACCURACY_HIGH:
b = 4
case ACCURACY_ULTRA_HIGH:
b = 5
default:
// assign accuracy to lowest resolution by default
b = 1
}
return b
}
// readUncompTemprature reads uncompensated temprature from sensor.
func (v *SensorBME280) readUncompTemprature(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {
var power byte = 1 // Forced mode
osrt := v.getOversamplingRation(accuracy)
err := i2c.WriteRegU8(BME280_CTRL_MEAS, power|(osrt<<5))
if err != nil {
return 0, err
}
_, err = waitForCompletion(v, i2c)
if err != nil {
return 0, err
}
buf, _, err := i2c.ReadRegBytes(BME280_TEMP_OUT_MSB_LSB_XLSB, 3)
if err != nil {
return 0, err
}
ut := int32(buf[0])<<12 + int32(buf[1])<<4 + int32(buf[2]&0xF0)>>4
return ut, nil
}
// readUncompPressure reads uncompensated atmospheric pressure from sensor.
func (v *SensorBME280) readUncompPressure(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {
var power byte = 1 // Forced mode
osrp := v.getOversamplingRation(accuracy)
err := i2c.WriteRegU8(BME280_CTRL_MEAS, power|(osrp<<2))
if err != nil {
return 0, err
}
_, err = waitForCompletion(v, i2c)
if err != nil {
return 0, err
}
buf, _, err := i2c.ReadRegBytes(BME280_PRESS_OUT_MSB_LSB_XLSB, 3)
if err != nil {
return 0, err
}
up := int32(buf[0])<<12 + int32(buf[1])<<4 + int32(buf[2]&0xF0)>>4
return up, nil
}
// readUncompHumidity reads uncompensated humidity from sensor.
func (v *SensorBME280) readUncompHumidity(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {
var power byte = 1 // Forced mode
osrt := v.getOversamplingRation(accuracy)
err := i2c.WriteRegU8(BME280_CTRL_MEAS, power|(osrt<<5))
if err != nil {
return 0, err
}
_, err = waitForCompletion(v, i2c)
if err != nil {
return 0, err
}
osrh := v.getOversamplingRation(ACCURACY_ULTRA_LOW)
err = i2c.WriteRegU8(BME280_CTRL_HUM, osrh)
if err != nil {
return 0, err
}
_, err = waitForCompletion(v, i2c)
if err != nil {
return 0, err
}
buf, _, err := i2c.ReadRegBytes(BME280_HUM_OUT_MSB_LSB, 2)
if err != nil {
return 0, err
}
uh := int32(buf[0])<<8 + int32(buf[1])
return uh, nil
}
// readUncompTempratureAndPressure reads temprature and
// atmospheric uncompensated pressure from sensor.
// BME280 allows to read temprature and pressure in one cycle,
// BMP180 - doesn't.
func (v *SensorBME280) readUncompTempratureAndPressure(i2c *i2c.I2C,
accuracy AccuracyMode) (temprature int32, pressure int32, err error) {
var power byte = 1 // Forced mode
osrt := v.getOversamplingRation(ACCURACY_STANDARD)
osrp := v.getOversamplingRation(accuracy)
err = i2c.WriteRegU8(BME280_CTRL_MEAS, power|(osrt<<5)|(osrp<<2))
if err != nil {
return 0, 0, err
}
_, err = waitForCompletion(v, i2c)
if err != nil {
return 0, 0, err
}
buf, _, err := i2c.ReadRegBytes(BME280_TEMP_OUT_MSB_LSB_XLSB, 3)
if err != nil {
return 0, 0, err
}
ut := int32(buf[0])<<12 + int32(buf[1])<<4 + int32(buf[2]&0xF0)>>4
buf, _, err = i2c.ReadRegBytes(BME280_PRESS_OUT_MSB_LSB_XLSB, 3)
if err != nil {
return 0, 0, err
}
up := int32(buf[0])<<12 + int32(buf[1])<<4 + int32(buf[2]&0xF0)>>4
return ut, up, nil
}
// ReadTemperatureMult100C reads and calculates temrature in C (celsius) multiplied by 100.
// Multiplication approach allow to keep result as integer number.
func (v *SensorBME280) ReadTemperatureMult100C(i2c *i2c.I2C, accuracy AccuracyMode) (int32, error) {
ut, err := v.readUncompTemprature(i2c, accuracy)
if err != nil {
return 0, err
}
err = v.ReadCoefficients(i2c)
if err != nil {
return 0, err
}
var1 := ((ut>>3 - int32(v.Coeff.dig_T1())<<1) * int32(v.Coeff.dig_T2())) >> 11
lg.Debugf("var1=%v", var1)
var2 := (((ut>>4 - int32(v.Coeff.dig_T1())) * (ut>>4 - int32(v.Coeff.dig_T1()))) >> 12 *
int32(v.Coeff.dig_T3())) >> 14
lg.Debugf("var1=%v", var2)
tFine := var1 + var2
lg.Debugf("t_fine=%v", tFine)
t := (tFine*5 + 128) >> 8
return t, nil
}
// ReadPressureMult10Pa reads and calculates atmospheric pressure in Pa (Pascal) multiplied by 10.
// Multiplication approach allow to keep result as integer number.
func (v *SensorBME280) ReadPressureMult10Pa(i2c *i2c.I2C, accuracy AccuracyMode) (uint32, error) {
ut, up, err := v.readUncompTempratureAndPressure(i2c, accuracy)
if err != nil {
return 0, err
}
lg.Debugf("ut=%v, up=%v", ut, up)
err = v.ReadCoefficients(i2c)
if err != nil {
return 0, err
}
var01 := ((ut>>3 - int32(v.Coeff.dig_T1())<<1) * int32(v.Coeff.dig_T2())) >> 11
lg.Debugf("var01=%v", var01)
var02 := (((ut>>4 - int32(v.Coeff.dig_T1())) * (ut>>4 - int32(v.Coeff.dig_T1()))) >> 12 *
int32(v.Coeff.dig_T3())) >> 14
lg.Debugf("var01=%v", var02)
tFine := var01 + var02
var1 := int64(tFine) - 128000
lg.Debugf("var1=%v", var1)
var2 := var1 * var1 * int64(v.Coeff.dig_P6())
lg.Debugf("var2=%v", var2)
var2 += (var1 * int64(v.Coeff.dig_P5())) << 17
var2 += int64(v.Coeff.dig_P4()) << 35
lg.Debugf("var2=%v", var2)
var1 = (var1*var1*int64(v.Coeff.dig_P3()))>>8 + (var1*int64(v.Coeff.dig_P2()))<<12
var1 = ((int64(1)<<47 + var1) * int64(v.Coeff.dig_P1())) >> 33
lg.Debugf("var1=%v", var1)
if var1 == 0 {
return 0, nil
}
p1 := int64(1048576) - int64(up)
p1 = ((p1<<31 - var2) * 3125) / var1
var1 = (int64(v.Coeff.dig_P9()) * (p1 >> 13) * (p1 >> 13)) >> 25
var2 = (int64(v.Coeff.dig_P8()) * p1) >> 19
p1 = (p1+var1+var2)>>8 + int64(v.Coeff.dig_P7())<<4
p2 := p1 * 10 / 256
p := uint32(p2)
return p, nil
}
// ReadHumidityMultQ2210 reads and calculate humidity in %RH.
// Multiplication approach allow to keep result as integer number.
// To get real value it's necessary to divide result by 1024.
func (v *SensorBME280) ReadHumidityMultQ2210(i2c *i2c.I2C,
accuracy AccuracyMode) (supported bool, humidity uint32, erro error) {
ut, err := v.readUncompTemprature(i2c, accuracy)
if err != nil {
return true, 0, err
}
uh, err := v.readUncompHumidity(i2c, accuracy)
if err != nil {
return true, 0, err
}
lg.Debugf("ut=%v, uh=%v", ut, uh)
err = v.ReadCoefficients(i2c)
if err != nil {
return true, 0, err
}
var01 := ((ut>>3 - int32(v.Coeff.dig_T1())<<1) * int32(v.Coeff.dig_T2())) >> 11
lg.Debugf("var01=%v", var01)
var02 := (((ut>>4 - int32(v.Coeff.dig_T1())) * (ut>>4 - int32(v.Coeff.dig_T1()))) >> 12 *
int32(v.Coeff.dig_T3())) >> 14
lg.Debugf("var01=%v", var02)
tFine := var01 + var02
lg.Debugf("t_fine=%v", tFine)
// Alternative version of humidity calculation from raw value
// based on float ariphmetics.
//
// var var_H float64
// var_H = float64(tFine) - 76800.0
// var_H = (float64(uh) - ((float64(v.Coeff.dig_H4()))*64.0 + (float64(v.Coeff.dig_H5()))/16384.0*var_H)) *
// (float64(v.Coeff.dig_H2()) / 65536.0 * (1.0 + (float64(v.Coeff.dig_H6()) / 67108864.0 * var_H *
// (1.0 + (float64(v.Coeff.dig_H3()) / 67108864.0 * var_H)))))
// var_H = var_H * (1.0 - (float64(v.Coeff.dig_H1()) * var_H / 524288.0))
// if var_H > 100.0 {
// var_H = 100.0
// }
// if var_H < 0.0 {
// var_H = 0.0
// }
// return true, uint32(var_H * 1024), nil
var v_x1 int32
v_x1 = tFine - 76800
lg.Debugf("v_x1=%v", v_x1)
v_x1 = ((((uh << 14) - (int32(v.Coeff.dig_H4()) << 20) - (int32(v.Coeff.dig_H5()) * v_x1)) +
16384) >> 15) * (((((((v_x1*int32(v.Coeff.dig_H6()))>>10)*(((v_x1*
int32(v.Coeff.dig_H3()))>>11)+32768))>>10)+2097152)*
int32(v.Coeff.dig_H2()) + 8192) >> 14)
lg.Debugf("v_x1=%v", v_x1)
v_x1 = v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * int32(v.Coeff.dig_H1())) >> 4)
lg.Debugf("v_x1=%v", v_x1)
if v_x1 < 0 {
v_x1 = 0
} else if v_x1 > 419430400 {
v_x1 = 419430400
}
lg.Debugf("v_x1=%v", v_x1)
v_x1 = v_x1 >> 12
lg.Debugf("v_x1=%v", v_x1)
return true, uint32(v_x1), nil
}
|