1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/*
* Copyright 2019 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package sim
import (
"bufio"
"errors"
"fmt"
"io"
"math/rand"
"strconv"
"strings"
"time"
)
var (
// ErrDone is returned when the underlying file has ran out of lines.
ErrDone = errors.New("no more values in the Simulator")
// ErrBadLine is returned when the trace file line is unrecognizable to
// the Parser.
ErrBadLine = errors.New("bad line for trace format")
)
// Simulator is the central type of the `sim` package. It is a function
// returning a key from some source (composed from the other functions in this
// package, either generated or parsed). You can use these Simulators to
// approximate access distributions.
type Simulator func() (uint64, error)
// NewZipfian creates a Simulator returning numbers following a Zipfian [1]
// distribution infinitely. Zipfian distributions are useful for simulating real
// workloads.
//
// [1]: https://en.wikipedia.org/wiki/Zipf%27s_law
func NewZipfian(s, v float64, n uint64) Simulator {
z := rand.NewZipf(rand.New(rand.NewSource(time.Now().UnixNano())), s, v, n)
return func() (uint64, error) {
return z.Uint64(), nil
}
}
// NewUniform creates a Simulator returning uniformly distributed [1] (random)
// numbers [0, max) infinitely.
//
// [1]: https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
func NewUniform(max uint64) Simulator {
m := int64(max)
r := rand.New(rand.NewSource(time.Now().UnixNano()))
return func() (uint64, error) {
return uint64(r.Int63n(m)), nil
}
}
// Parser is used as a parameter to NewReader so we can create Simulators from
// varying trace file formats easily.
type Parser func(string, error) ([]uint64, error)
// NewReader creates a Simulator from two components: the Parser, which is a
// filetype specific function for parsing lines, and the file itself, which will
// be read from.
//
// When every line in the file has been read, ErrDone will be returned. For some
// trace formats (LIRS) there is one item per line. For others (ARC) there is a
// range of items on each line. Thus, the true number of items in each file
// is hard to determine, so it's up to the user to handle ErrDone accordingly.
func NewReader(parser Parser, file io.Reader) Simulator {
b := bufio.NewReader(file)
s := make([]uint64, 0)
i := -1
var err error
return func() (uint64, error) {
// only parse a new line when we've run out of items
if i++; i == len(s) {
// parse sequence from line
if s, err = parser(b.ReadString('\n')); err != nil {
s = []uint64{0}
}
i = 0
}
return s[i], err
}
}
// ParseLIRS takes a single line of input from a LIRS trace file as described in
// multiple papers [1] and returns a slice containing one number. A nice
// collection of LIRS trace files can be found in Ben Manes' repo [2].
//
// [1]: https://en.wikipedia.org/wiki/LIRS_caching_algorithm
// [2]: https://git.io/fj9gU
func ParseLIRS(line string, err error) ([]uint64, error) {
if line = strings.TrimSpace(line); line != "" {
// example: "1\r\n"
key, err := strconv.ParseUint(line, 10, 64)
return []uint64{key}, err
}
return nil, ErrDone
}
// ParseARC takes a single line of input from an ARC trace file as described in
// "ARC: a self-tuning, low overhead replacement cache" [1] by Nimrod Megiddo
// and Dharmendra S. Modha [1] and returns a sequence of numbers generated from
// the line and any error. For use with NewReader.
//
// [1]: https://scinapse.io/papers/1860107648
func ParseARC(line string, err error) ([]uint64, error) {
if line != "" {
// example: "0 5 0 0\n"
//
// - first block: starting number in sequence
// - second block: number of items in sequence
// - third block: ignore
// - fourth block: global line number (not used)
cols := strings.Fields(line)
if len(cols) != 4 {
return nil, ErrBadLine
}
start, err := strconv.ParseUint(cols[0], 10, 64)
if err != nil {
return nil, err
}
count, err := strconv.ParseUint(cols[1], 10, 64)
if err != nil {
return nil, err
}
// populate sequence from start to start + count
seq := make([]uint64, count)
for i := range seq {
seq[i] = start + uint64(i)
}
return seq, nil
}
return nil, ErrDone
}
// Collection evaluates the Simulator size times and saves each item to the
// returned slice.
func Collection(simulator Simulator, size uint64) []uint64 {
collection := make([]uint64, size)
for i := range collection {
collection[i], _ = simulator()
}
return collection
}
// StringCollection evaluates the Simulator size times and saves each item to
// the returned slice, after converting it to a string.
func StringCollection(simulator Simulator, size uint64) []string {
collection := make([]string, size)
for i := range collection {
n, _ := simulator()
collection[i] = fmt.Sprintf("%d", n)
}
return collection
}
|