1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*
* SPDX-FileCopyrightText: © Hypermode Inc. <hello@hypermode.com>
* SPDX-License-Identifier: Apache-2.0
*/
package ristretto
import (
"sync"
"time"
)
type updateFn[V any] func(cur, prev V) bool
// TODO: Do we need this to be a separate struct from Item?
type storeItem[V any] struct {
key uint64
conflict uint64
value V
expiration time.Time
}
// store is the interface fulfilled by all hash map implementations in this
// file. Some hash map implementations are better suited for certain data
// distributions than others, so this allows us to abstract that out for use
// in Ristretto.
//
// Every store is safe for concurrent usage.
type store[V any] interface {
// Get returns the value associated with the key parameter.
Get(uint64, uint64) (V, bool)
// Expiration returns the expiration time for this key.
Expiration(uint64) time.Time
// Set adds the key-value pair to the Map or updates the value if it's
// already present. The key-value pair is passed as a pointer to an
// item object.
Set(*Item[V])
// Del deletes the key-value pair from the Map.
Del(uint64, uint64) (uint64, V)
// Update attempts to update the key with a new value and returns true if
// successful.
Update(*Item[V]) (V, bool)
// Cleanup removes items that have an expired TTL.
Cleanup(policy *defaultPolicy[V], onEvict func(item *Item[V]))
// Clear clears all contents of the store.
Clear(onEvict func(item *Item[V]))
SetShouldUpdateFn(f updateFn[V])
}
// newStore returns the default store implementation.
func newStore[V any]() store[V] {
return newShardedMap[V]()
}
const numShards uint64 = 256
type shardedMap[V any] struct {
shards []*lockedMap[V]
expiryMap *expirationMap[V]
}
func newShardedMap[V any]() *shardedMap[V] {
sm := &shardedMap[V]{
shards: make([]*lockedMap[V], int(numShards)),
expiryMap: newExpirationMap[V](),
}
for i := range sm.shards {
sm.shards[i] = newLockedMap[V](sm.expiryMap)
}
return sm
}
func (m *shardedMap[V]) SetShouldUpdateFn(f updateFn[V]) {
for i := range m.shards {
m.shards[i].setShouldUpdateFn(f)
}
}
func (sm *shardedMap[V]) Get(key, conflict uint64) (V, bool) {
return sm.shards[key%numShards].get(key, conflict)
}
func (sm *shardedMap[V]) Expiration(key uint64) time.Time {
return sm.shards[key%numShards].Expiration(key)
}
func (sm *shardedMap[V]) Set(i *Item[V]) {
if i == nil {
// If item is nil make this Set a no-op.
return
}
sm.shards[i.Key%numShards].Set(i)
}
func (sm *shardedMap[V]) Del(key, conflict uint64) (uint64, V) {
return sm.shards[key%numShards].Del(key, conflict)
}
func (sm *shardedMap[V]) Update(newItem *Item[V]) (V, bool) {
return sm.shards[newItem.Key%numShards].Update(newItem)
}
func (sm *shardedMap[V]) Cleanup(policy *defaultPolicy[V], onEvict func(item *Item[V])) {
sm.expiryMap.cleanup(sm, policy, onEvict)
}
func (sm *shardedMap[V]) Clear(onEvict func(item *Item[V])) {
for i := uint64(0); i < numShards; i++ {
sm.shards[i].Clear(onEvict)
}
sm.expiryMap.clear()
}
type lockedMap[V any] struct {
sync.RWMutex
data map[uint64]storeItem[V]
em *expirationMap[V]
shouldUpdate updateFn[V]
}
func newLockedMap[V any](em *expirationMap[V]) *lockedMap[V] {
return &lockedMap[V]{
data: make(map[uint64]storeItem[V]),
em: em,
shouldUpdate: func(cur, prev V) bool {
return true
},
}
}
func (m *lockedMap[V]) setShouldUpdateFn(f updateFn[V]) {
m.shouldUpdate = f
}
func (m *lockedMap[V]) get(key, conflict uint64) (V, bool) {
m.RLock()
item, ok := m.data[key]
m.RUnlock()
if !ok {
return zeroValue[V](), false
}
if conflict != 0 && (conflict != item.conflict) {
return zeroValue[V](), false
}
// Handle expired items.
if !item.expiration.IsZero() && time.Now().After(item.expiration) {
return zeroValue[V](), false
}
return item.value, true
}
func (m *lockedMap[V]) Expiration(key uint64) time.Time {
m.RLock()
defer m.RUnlock()
return m.data[key].expiration
}
func (m *lockedMap[V]) Set(i *Item[V]) {
if i == nil {
// If the item is nil make this Set a no-op.
return
}
m.Lock()
defer m.Unlock()
item, ok := m.data[i.Key]
if ok {
// The item existed already. We need to check the conflict key and reject the
// update if they do not match. Only after that the expiration map is updated.
if i.Conflict != 0 && (i.Conflict != item.conflict) {
return
}
if m.shouldUpdate != nil && !m.shouldUpdate(i.Value, item.value) {
return
}
m.em.update(i.Key, i.Conflict, item.expiration, i.Expiration)
} else {
// The value is not in the map already. There's no need to return anything.
// Simply add the expiration map.
m.em.add(i.Key, i.Conflict, i.Expiration)
}
m.data[i.Key] = storeItem[V]{
key: i.Key,
conflict: i.Conflict,
value: i.Value,
expiration: i.Expiration,
}
}
func (m *lockedMap[V]) Del(key, conflict uint64) (uint64, V) {
m.Lock()
defer m.Unlock()
item, ok := m.data[key]
if !ok {
return 0, zeroValue[V]()
}
if conflict != 0 && (conflict != item.conflict) {
return 0, zeroValue[V]()
}
if !item.expiration.IsZero() {
m.em.del(key, item.expiration)
}
delete(m.data, key)
return item.conflict, item.value
}
func (m *lockedMap[V]) Update(newItem *Item[V]) (V, bool) {
m.Lock()
defer m.Unlock()
item, ok := m.data[newItem.Key]
if !ok {
return zeroValue[V](), false
}
if newItem.Conflict != 0 && (newItem.Conflict != item.conflict) {
return zeroValue[V](), false
}
if m.shouldUpdate != nil && !m.shouldUpdate(newItem.Value, item.value) {
return item.value, false
}
m.em.update(newItem.Key, newItem.Conflict, item.expiration, newItem.Expiration)
m.data[newItem.Key] = storeItem[V]{
key: newItem.Key,
conflict: newItem.Conflict,
value: newItem.Value,
expiration: newItem.Expiration,
}
return item.value, true
}
func (m *lockedMap[V]) Clear(onEvict func(item *Item[V])) {
m.Lock()
defer m.Unlock()
i := &Item[V]{}
if onEvict != nil {
for _, si := range m.data {
i.Key = si.key
i.Conflict = si.conflict
i.Value = si.value
onEvict(i)
}
}
m.data = make(map[uint64]storeItem[V])
}
|